1 Complex Numbers and Some Basic Algebraic Manip-
ulations

Definition 1.1. By introducing the pure imaginary number i satisfying i> = —1, the set of
complex numbers C is defined by

C={z+vyi:z,y e R},
where R is the set of real numbers.

Definition 1.2. For a complex number z = x+yi, v,y € R, x and y are the real and imaginary
parts of z. We denote

Rez=2 and Imz=y.

If Imz = 0, then z is a real number. If Rez = 0, z is called a pure imaginary number. Two
complex numbers z; and zy are equal if

Rez; = Rezy and Imz; = Im 2.

Remark 1.3. For a,b € R, one of the following three relations holds: (i) a < b; (ii) a = b;
(#i) a > b. But for complex numbers z; and z, we do not have zy > z3 or z; < 2.

Definition 1.4 (Addition). For z; = z1 + y1i and 23 = x9 + Yoi, x1,2T2,Y1,Y2 € R, we define
the sum z1 + 29 to be

21+ 20 = (21 + 22) + (y1 + y2)i.
Property 1.5.
(i) (Commutative law) z1 + 29 = 29 + 21 for all z1, z, € C.
(i1) (Associative law) z1 + (20 + 23) = (21 + 22) + 23 for all z1, 29, z3 € C.
(111) (Summation identity) There is 0 € C such that z+ 0 = z for all z € C.
(iv) (Summation inverse) For all z € C, there is —z € C such that z + (—z) = 0.
Remark 1.6.
(i) 0= 0+ 0i.
(it) For z=x+yi, v,y € R, —z = (—z) + (—y)i.
Definition 1.7 (Subtraction). For z1, zy € C, we define the subtraction z; — zy to be
21— 29 =21+ (—22).

Formal Calculation. Assuming that the commutative law, associative law and the distributive
law hold for complex numbers, for x1,xs,y1,ys € R,

(21 + 118) (T2 + yoi) = 2129 + T1Y2i + Toyri + Y1y2i”
= T1%2 + T1Y2l + T2Y1l — Y12

= (2172 — 1y2) + (212 + T2y )i



Definition 1.8 (Multiplication). For z; = x1 + y1t and zo = T3 + Yoi, T1,T2,Y1,Y2 € R, we
define the product z1zo to be

2122 = (1172 — Y1) + (¥1Y2 + Tay )i

Property 1.9.

(i) (Commutative law) z1z9 = 2921 for all zy, 2z € C.

(ii) (Associative law) z1(z923) = (2122)23 for all z1, 29, 23 € C.

(i1i) (Distributive law) z1(zo + 23) = 2122 + 2123 for all 21, 29, 23 € C.

(iv) (Multiplication identity) There is 1 € C such that z-1 = z for all z € C.

(v) (Multiplication inverse) For all z € C\{0}, there is z=' € C such that zz' = 1.
Remark 1.10.

(i) If z1,20 € C, 2129 = 0, then either z; =0 or z5 = 0, or possibly z; = zo = 0.

(ii) 1 =1+ 0.

T n -y .
1.
$2+y2 1’2+y2

(111) For z=x+yi, z,y € R, 27! =

iv) Sometimes, we denote z= by —.
Y
z

(v) For z € C\{0}, n € N, 2" is defined inductively by

2k =212 fork €N,
2 =1.

(vi) (Binomial formula) For z,, 2z € C\{0}, n € N,

(21 +22)" = Z (Z) 22",

k=0

;)

Definition 1.11 (Division). For 21,29 € C, 23 # 0, we define the division by

where

22

Remark 1.12. For zy,...,24 € C, 23 # 0, 24 # 0,

21 ) 2122
z3 Z4 2324 .



Example 1.13.

4+i  (4+0)(2+3i)) 5+14 5 FRCY
2-3i (2+3)(2-3i)) 13 13 13"

Definition 1.14 (Euler’s formula). Fory € R,
e¥" = cosy + isiny.

Formal Calculation. Recall that the exponential function for real numbers admits a Taylor
expansion. For x € R,

If the above expansion holds for complex numbers, particularly for pure imaginary numbers, we
have

i
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Since i** = 1, ¢+ = ¢ %2 = 1 and i*T3 = —i, for all k € NU {0}, we can divide the
above series into four parts as follows.
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Combining the real parts and the imaginary parts together, it follows
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cosy + i siny.

Definition 1.15. For z =z + yi, x,y € R,

z

e® = e"(cosy +isiny).
Proposition 1.16. For z1, 2z € C,
€Z1+Zz — e*le®2

e

Remark 1.17. For z € C, the complex exponential function also has the Taylor expansion



2 Geometric Representation of Complex Number Field

A complex number z = z + yi, x,y € R, can be identified as a point (z,y) in R%2. We can
interpret the algebraic manipulations of complex numbers in the following geometric way.

Addition. Given 2,2y € C, we can construct a parallelogram with edges 0z, and 0zo. Then
the fourth vertex, different from 0, z1 and zo, corresponds to z1 + zs.

Subtraction. z; — 2z, denotes the vector starting from zo and ending at z;.

Polar Coordinates. For (x,y) € R?, we have the polar coordinates
(2,y) = (pcosd, psind),

where p = \/x? + y?, 0 € R. The corresponding complex number z = x + yi can be represented
as

z=x+yi=pcost+ipsinh = p(cosf + isinf).

0

By using Euler’s formula, cos + isin@ = €, we obtain

z = pe?.

Definition 2.1. For z = x4+ yi = pe? € C, p = /22 + 2 is called the modulus of z, denoted
by |z|. That is, the modulus of z is

2] = /(Re 2)2 + (Im 2)2.
And for z # 0, we call 8 an argument of z and define arg z to be the set of all argument of z.
Example 2.2.
(i) | — 3+ 2i| = V13,
(i) |1+ 4i] = V17.
Remark 2.3.
(i) Geometrically, |z| is the distance between (x,y) and the origin.
(i1)) Rez <|Rez| < |z| and Imz < |[Im z| < |z|.
(iii) For z1,2zy € C, |z129| = |21]|22|. And |27Y = |2|7! if 2 #£ 0.
() 2" = |z|™ for z € C, n € N.
(v) For z =0, 0 is undefined.

(vi) For z # 0, 0 is defined up to 2kmw, k € Z. If we restrict  to be a number in (—7, x|,
then the argument for a complex number can be uniquely determined. That is, there is a
unique © € (—m,m| such that © € argz. We call © the principal argument of z, denoted
by Arg z.



(vii) For z #0,
argz = {Argz+2kn k€ Z}.

Example 2.4.

3
1
, 3T
arg(—1 —1) = {—Z%—Qkﬂr:k‘EZ}.

Arg(—1—1i)=—

Proposition 2.5 (Triangle inequality). For z1, 2z, € C,
21] = [22| < |21 + 22| < |21 + [22].

Proof. For the second inequality, we can construct a triangle with vertices 0, z; and 2, + z5.
Then length of the edge between 0 and z; + 25 if bounded by the sum of the length of the other
two. The inequality then follows. As for the first inequality, we can apply the inequality we
just proved to get

|21] = (21 + 22) + (—22)| < |21 + 22| + | — 22| = |21 + 22| + |22].

That is,

|21] = |22| < |21 + 29
Interchanging the roles of z; and z3, we obtain

|22] — |21| < |21 + 2.
The last two inequalities complete the proof. O]
Proposition 2.6. For zq, ..., z, € C,

|21+ oo+ 20| < 21| + oo+ |20

Proof. By mathematical induction. O

Example 2.7. We can use the triangle inequality to estimate 3 + z + 22 for all z with |z| = 2
as follows. By the triangle inequality,

342+ 2% <34 |2 + 27
Since |2%| = |z|? and |z| = 2, the above estimate is reduced to
3+ 2+ 2% <3+ 2|+ 2% =3+ 2|+ |2)* = 9.
Multiplication. For two complex numbers z1 = p1e'®t and 2, = p2e??, we have
179 = p1pact@te),
That 1is,
|2122| = p1p2

and

arg(z122) = {61 + 02 + 2km : k € Z}.



Remark 2.8. When a complex number z, = pe® is multiplied by another complex number
29 = p2e2 | we have the modulus of the product |z125| = pa|z1|. That is, it corresponds to stretch
or compress the vector z1. Since 01 + 0y is an argument of z129, the direction of z129 can be
obtained by rotating the direction of z; counterclockwise by 65 if 65 > 0, or clockwise by —0y if
62 < 0.

Remark 2.9.
(i) arg(z120) = arg z; + arg z» in the sense of set addition. But in general, the equality
Arg(z129) = Arg z; + Arg 25
1s false.
(i) For complex number z = pe?, p >0, 271 = p~te=¥.
(iii) For z # 0, arg(z™!) = —arg z.

(1v) For z1,2z9 € C, 29 # 0, arg(ﬁ) = arg z; — arg 2o.
%)

(v) For complex number z = pe'®, p > 0, 2" = p"e™ for all n € Z.
(vi) (de Moivre’s formula) By using (v) with p =1, for n € Z, we have
()" = e,
That 1s,
(cos @ + isinh)" = cosnb + isinnb. (2.1)
Example 2.10. If z; = —1 and 25 = 1, then
Argzi =7 and Argz = g

However,

. T 3T
Arg(z129) = Arg(—i) = —5 # -5 = Arg z; + Arg zs.

Example 2.11. In order to find the principal argument of z = -, we start by writing

arg z = argi — arg(—1 — 7).

Since
3_7r

Argi:g and Arg(—1—1)=— 1

5
we have that Zﬂ € arg z. Therefore,

Argz = ——.



Example 2.12. By (2.1) with n = 2, we have
(cosf +isinf)? = cos 20 + i sin 26.
That 1is,
(cos® @ — sin®§) + i (2sin 6 cos §) = cos 20 + i sin 26.
Therefore,

cos 20 = cos® 0 —sin®6, and sin20 = 2sinf cos .

3 Some Basic Geometric Objects Represented in Com-
plex Theory

Example 3.1 (Circles). A circle with center zy and radius 1o is given by {z € C: |z — zo| = 1¢}-
Example 3.2. The interior part of the circle given in Example 3.1 is the set {z € C : |z — zy| < ro}.
Example 3.3. The exterior part of the circle given in Example 3.1 is the set {z € C : |z — z| > 1o}

Example 3.4 (Ellipses). An ellipse with foci z1 and 2o is given by {z € C : |z — 21| + |z — 22| = d}.
Here d is the length of the long axis.

Example 3.5 (Lines). Given two complex numbers z; and z, they determine a straight line L
such that L passes across z; and zo. For all points on L, denoted by z, the direction from z,
to z9 and the direction from z; to z are either the same or different by w. Therefore, by polar

coordinates, if z — 2z, = pe', then it must hold
z—z=re? or z—z =rd@,

Here p and r are moduli of zo — 21 and z — z1, respectively. Therefore, we have

, zZ— 2z r zZ—2 r
either =—- or =——.
Zo — 21 p 29 — 21 P
. £g—z . . . . .
In either case, 15 real, provided that z lies on the line L. The converse is also true. So
‘2 — 2

in the complex theory, line L determined by z; and zy can be represented by

L:{ZEC:Im(Z_Zl):O}. (3.1)
Z9 — 21
Example 3.6. Find all points which satisfy
13
Im (H—?’Z) =0.
4—1

The condition given in this example is quite similar to (3.1). It is a particular case of (3.1)
when we have

—z1=1—31 and zy— 2z =4 —1.

That is, z1 = —1 + 3i and 2o = 3 + 2i. By the discussion in Fxample 3.5, the points in this
example represent a line passing across —1 + 3t and 3 + 21.

7



Example 3.7 (Another representation for circles). A circle can be uniquely determined by given
three points which are not on the same line. Suppose that C' is the circle passing across zi, zo
and z3. For another point z on C, without loss of generality, we assume that 2y, 29, 23 and z are

clockwise distributed. Other cases can be similarly considered. Then by fundamental geometry,
it holds

L17370 = L2177,

The reason is that these two angles correspond to the same arc on the circle C'. Notice that

we can rotate the vector z3 — zo counterclockwise by the angle /z12325, the resulted vector must

have the same direction as z3 — z1. Therefore, we have
73 — 21 = A\ (23 — 29)€'47178%2

for some Ay > 0. Similarly, we have

eilzlzzg

2 — 21 = X2 — 29)

for some Ao > 0. Here A\; and Xy are positive real numbers. Since /z12320 = £2122o, the last

two equalities yield
z—2 / Z— 21\ A
Z — 29 23 — 29 N )\1 .

m[(22) /(222)] o

One can apply similar arguments above for the other possible positions of z on C. The last
equality always holds once z is on C'. Therefore, we conclude that

c={secim|(Z22) /(222)] ~o}. (32)

Example 3.8. Find all points which satisfy

This furthermore implies

Notice that

Therefore,

oot (L) (1) ().

Compare with (3.2), we have in this example

23— 21 .
= —1.

-z =1, 29=0, and P
3= 22



1 1
Equivalently, it holds zy = —i, 20 = 0, 23 = 575 It represents a circle passing across these
three points. Analytically all points in this example satisfy
n i 1
2+ -| =<
2 2

Example 3.9 (Side of a line). Given different z; and z3 in C, we can determine a line L. There
are two directions if a line is given. One direction is from z to zo, while another direction is
from z9 to zy. The concept of side is related to the direction that we are using. If we fix a
direction by starting from z, to z9, then all points on the left form the left-hand side of the line
L, while all points on the right form the right-hand side of the line L. Pay attention that the
left-hand side and the right-hand side depend on the direction that we are using. Suppose that
the direction is given by starting from z; to zo. Then, for an arbitrary point z on the left-hand
side, we can rotate zo — z; counterclockwise by an angle 6y € (0,7) to the direction given by
z — z1. In other words,

2z — 21 = Mz — 21)e™,

for some A\g > 0 and 0y € (0, 7). From the above equality, we have

Im<2_21> — Aosinfy > 0.

22— 2

Similarly, if z is on the right-hand side of L with the direction given by pointing from z; to 2o,
then it holds

22 — 21

Im(z_zl> — \osinfy < 0.

The above arguments and (3.1) implies that given z; and zo, all points satisfy (3.1) must lie on
the line across zy and zo. If
Im ( S ) >0,
Z9 — 21

then z lies on the left-hand side of L with the direction from 2z, to zs. If

Im(z_zl) <0,
Z9 — 21

then z lies on the right-hand side of L.

Example 3.10. Find all points satisfying

z+1— 3t

I _— . .

m( 1 )>O (3.3)
z+1—32

Im (22— 2" =

m( 1 ) 0

lie on the line L across z; = —1 4 3i, zo = 3 + 2i. By Example 3.9, z satisfying (3.3) must be
on the left-hand side of L with the direction from z; to zs.

By example 3.6, points satisfy

9



Example 3.11 (Reflection in the real axis). In complex theory, given a complexr number z =
x + yi, we have an operator to find its symmetric point with respect to the x-awis. In fact, the
symmetric point of (x,y) with respect to the x-axis is (x, —y). This symmetric point corresponds
to the number x — yi. In the future, we denote by Z = x — yi the symmetric point of z with
respect to the x-axis.

Definition 3.12 (Complex conjugates). For z = x + yi € C, the symmetric point of z with
respect to the real axis, i.e.,

zZ=x— i,
15 called the conjugate of z.
Property 3.13.

(1) Z =z and |z| = |z|.

S — . — . 21
(1)) 21+ 20 =Z1+ %3, 21 — 20 = 21 — %2, and Z123 = Z1 23. If 20 # 0, (—) =
)

&2

Z—Z

z+z
i) Res —
(iii) Rez 5

and Im z =

(iv) 2z = |z|?.

Example 3.14 (Computation of roots). Given z = pe?, we can easily calculate 2" = p"e™?.
Conversely, if we are given a = pye'® # 0, we can also find z such that 2" = a, n € N. Indeed,
suppose that z = pe, then 2™ = a can be equivalently written as

n _ind

pre™ = poe’™.

It then follows

p=p" and ei("e_ao) =1

p 1s uniquely determined. But cosine and sine are periodic function, the second equality above
can only 1mply

nf — 6y = 2km,
for some k € Z. Therefore, 0 is not uniquely determined. All z with p = p(l)/" and 0 given by
0 2k
O 2km

)
n n

k € Z,

will satisfy the equation z" = a. Such z is called an n-th root of a. Notice that we can only
have n different roots for a given non-zero complex number a.

Definition 3.15. For z € C, n € N, we denote z'/" the set of n-th roots of z. If z = pe'® # 0,
2= {C/ﬁei(%+2k7ﬂ) ck=0,1,....,n — 1} .
In particular, if z = pe? # 0 with 0 € (—7, 7, i.e., 0 = Arg z, then

{L/ﬁeié/n — WeiArgz/n

is called the principal n-th root of z.

10



Remark 3.16. If z = 0, all the n-th roots are 0.
Example 3.17. To find all of the fourth roots of —16, we have
—16 = 16e"".
Therefore,
(—16)/4 = {261'77/4’ 9¢i37/4 9iT/4. 2€i777/4} .
Example 3.18. To find all of the n-th roots of 1, we notice that
1=1e" with6=0.

Therefore,

1= {eCkmm | = 0,1,...,n— 1},

Definition 3.19. Given a set S C C, a point zg € C is called an interior point of S if there is
ro > 0 such that

B, (z0) ={z€C:|z—2| <ry} CS.
A point zg € C is called an exterior point of S if there is r1 > 0 such that
B, (z0) ={2€C:|z— 2| <r} CC\S.

A point zy is a boundary point of S if it is neither an interior point nor an exterior point of S.
A point zg is an accumulation point or a limit point if for any r > 0,

Definition 3.20. For a set S C C, the interior of S consists of all its interior points. We said
that S is open if every point in S is an interior point.

Definition 3.21. A set S is closed if the complement C\S is open. The closure of S is the
closed set consists of all points of S and its boundary.

Remark 3.22.
(i) ¢ and C are both open and closed.
(ii) A set can be neither open nor closed. For example, the set S ={z € C:1 < |z] <2}.

(i1i) For the set S in (ii), the interior of S is {z € C:1 < |z| < 2}, and the closure of S is
{zeC:1< 2| <2}.

Definition 3.23. A set S is connected if it cannot be partitioned into two part S = S1U S, for
nonempty Sy, Sy such that

SicU and S, CV

where U and V' are disjoint open sets.

11



4 Functions on Subsets of the Complex Plane

Definition 4.1. Let Sy and Sy be subsets of C. A function f is defined on Sy if for each z € Sy,
there is a unique complex number f(z) € Sy. We write it as

f:51 — Ss.

The set Sy is called the domain of f.

Remark 4.2. A complex function f on S can be represented as
=5+ fx,

where f1 and fy are two real-valued functions defined on S.

Here are some examples of functions.
Example 4.3. f(z) = 22 defined on C. If 2 = x + yi, then

f(z) = (xQ - y2) + 2zyi.
Example 4.4. f(z2) = |z|?> defined on C. We have, for z = x + yi,

f(z) =27 +¢*
Example 4.5. For n € N, given n + 1 complex numbers ag, a, ..., a,, then the function
P(z) =ap+ a1z + ... + a,2"

15 called a polynomial of degree n. P can be defined on the whole C.

Example 4.6. Let P(z) and Q(z) be two polynomials. The quotient P(z)/Q(z) is called a
rational function and is defined at each point z with Q(z) # 0. For example, the function

2243 - 2243
B+24+52+5 (24 1)(2245)
is defined on C\ {—1,\/5@', —\/51}

Example 4.7. We know that 0 is the only square root for 0. But for a complex number z # 0,
the square roots of a complex number z are

21/2 — { |Z|eiArgz/2’ . |Z|eiArgz/2} 7

R(z) =

which consists of two values. So z'/? is not a function. But if we particularly choose one of
them, say, we define

f( ) |Z|l/26iArgz/2 ZfZ ?é 0,
Z) =
0 if z=0.

Then f is a function on C. More generally, given any 6y € R, we can define a function

o(z) = |2 |1/26i0/2 if 2= |2¢® £0, 0 € (6,00 +2n],
0 if z=0,

which also corresponds to a square root of z.

12



Example 4.8.

(i) For zy € C, fi1(2) := z + 2y, which is a translation function.

(ii) For 0y € R, fo(2) := €™z, which is a rotation function.

(i1i) Forrg € R, f3(z) := 1oz, which is a scaling function.

(v) fi(2) :=Z, which corresponds to the reflection with respect to the real axis.
All of these functions are defined on C.
Example 4.9. Given c € C, the function €% is defined on C.
Example 4.10. We define the sine and the cosine for complex numbers by

eiz + efiz ) eiz - efiz
COSg ' == ———— and sinz:= e —
2 21

Also, the hyperbolic sine and the hyperbolic cosine are defined by

e+ e * . e — e *
cosh z := — and sinhz:i= ———

All of these functions are defined on C.

Example 4.11. The motivation of the definition of the logarithm s to find the inverse of the
exponential function. That is, we want to solve the equation

€ =w

or given w € C\{0}. Suppose that w = pe®?, p = |w|, § = Argw, and z = x + yi, then the
pe”, p
above equation becomes

eV = peif
We have,
e =p and €Y =e?,
which gives

r=Inp and y=0+2knr, keZ.

Here In denotes the logarithm for the real numbers. There is a multi-value problem. If we fix
ag € R, then for each 0 € (—7, x|, we can determine a unique k € Z such that

0 + 2km € (ap, g + 27).
Then we can define
logz:=Inp+i(0+2kr) suchthat 0+ 2kmw € (ap, ap + 27,

which is a function on C\{0}.

13



Definition 4.12. (Principal branch of the logarithm) A branch of the logarithm is a continuous
function f defined on an open subset U of C\{0} such that

el — 5
for all z € U. The principal branch of the logarithm is defined by
log z :=In |z| + iArg z
on{z:C:|z] >0,—7 < Argz < 7}.

Example 4.13. Given a branch of the logarithm defined on U and a complex number ¢, we can
define the power function z¢ to be

c clog z

Z =€

If the principal branch of the logarithm is used, the above definition is called the principal branch
of the power function z°.

Remark 4.14. In general, given c € C, 2¢ might not be defined at 0.
Example 4.15. By using the principal branch of the power function z,

i pilogi _ Li(ln1+7) _

7 —7/2

(&

5 Continuity of Functions

Definition 5.1. Given a function f defined on an open set 2, and zy an accumulation point
of Q\{z0}, we call that f has a limit wy at zo if for all € > 0, there is § > 0 such that

|f(2) —wo| <e forall z€Q, 0<|z—z|<0.
And we write it as

lim f(z) = wy.
Z—20

Proposition 5.2.
(i) If lim,,,, f(2) = wy and lim,_,,, f(2) = ws, then wy = ws.

(i1) If f(2) = u(z)+iv(z), where u and v are real-valued functions, then lim,_,,, f(z) = uo+voi

of and only iof

lim u(z) =wy and lim v(z) = vo.
Z—20 Z—20

(11i) If im, ., f(z) = wy and lim,_,,, g(z) = wo, then

lim (f(2) +¢9(2)) =wi +wy and lim (f(2)g(z)) = wyw,.

Z—r20 Z—r20

If, in addition, wy # 0, then

lim —~% =

f(z) _w
2=z g(2)  wq

14



Example 5.3. To show that if f(z) =iz/2, then

ll_fgf(z):§
Notice that
il iz |z -1
‘f(z)_é 2 2T 2
We have
’f(z)—% <e provided |z—1|<2e.

Example 5.4. For a polynomial P(z) = ag+ a1z + asz® + ... + a, 2" with ag, ...,a, € C, n € N,
we have the limit

lim P(z) = ag + a120 + @225 + ... + ap2.
Z—r20

Example 5.5. Check that if the function

f(z):=2/z, z#0,
has a limit at 0. Notice that, for z = x + yi # 0,

If we approach the origin along the real axis, for all x € R, we have
Re f(z) = 1.
And if we approach the origin along the imaginary azis, for all y € R, we have

Re f(yi) = —1.
Therefore, f does not have a limit at 0.

Example 5.6. Let f(z) = 1/logz be defined by using the principal branch of the logarithm on
Q={2:C:|z| >0,—7 < Argz < w}. To show that

lim f(z) =0,

z—0
we recall that for z € ),

1 1
~logz  Inlz| +iArgz

f(2)

Hence,

1 1
f(2)] < \/(ln‘z’>2+(Argz)2 = _ln|z]

for all z € Q with |z| < 1. Therefore,

f(2)| <& provided |2| < min{1,e 1},
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Definition 5.7. Given a function f defined on an open set Q2 C C, we call that f is continuous
at zg € Q if

lim f(2) = f(20).

Z—r20
If f is continuous at every point z € §2, we call that f is continuous on 2.

Proposition 5.8. If f and g are functions on an open set 2 C C and continuous at zy € 2,
then f4g and fg are both continuous at zy. Moreover, if g(zo) # 0, then f/g is also continuous
at 2.

Proposition 5.9. For f : Oy — Qs and g : Q5 — C, where 2, and €y are open sets in C,
suppose that f is continuous at zy € 4 and that g is continuous at f(zy), then the composition
go f is continuous at zg.

Example 5.10. Rez, Imz, |z| and Z are all continuous functions. If f : Q@ — C is continuous
on an open set Q C C, then |f(z)| is also continuous on §Q.

Example 5.11. Define the function
2/Z, if 2z # 0,
floy= {5
0, if z=0.
By Example 5.5, f does not have a limit at 0. Therefore, f is not continuous at 0.
Example 5.12. In this ezample, we will check for what ¢ € C, the function
2°, if 2z # 0,
f(z) = .
0, if z=0,

1s continuous at 0. Here z¢ is defined by using the following definition of the logarithm on
C\{0}:

log z = In|z| + iArg 2.
For z # 0,

¢ — eclogz — ec(ln|z\+10).

where 0 = Arg z. Suppose that ¢ = ¢1 + co1, ¢1,c9 € R, then the above equality becomes

c

2C — e(cl In |z|—c20)+i(c10+c2 In |z|

) — |Z’01€702062(c19+02 In |z\)

We divide it into three cases.
(i) For ¢y =0, we have
¢ — 6—0206202 1n|z|7 P # 0.

Taking the modulus of f,



If f is continuous at 0, then lim, o f(2) = 0 by the definition. Equivalently, it holds
lim, .o |f(2)] = 0. Now, we first approach the origin along the ray with angle 0. We have

lf(z)| =1 for all z with Arg z = 0.

Similarly, we can approach the origin along the ray with angle 7/2 and have
lf(2)| = e~/ for all z with Argz = g

Therefore, if ca # 0, |f| is not continuous at 0, which leads a contradiction. As for the
case ¢; = co = 0, we have

|f(2)|=1 forall z#0.
We conclude that f is not continuous at 0 if c; = 0.
(i) For ¢y <0, it holds
1f(2)] = |z|"e™?  for all z # 0.
In this case, for any 0 fized, since ¢; <0,

lim {f(z)] = oo,

|2]—0
which implies that f is not continuous at 0.
(i1i) For ¢y > 0, it holds
1£(2)] = |2[ e for all z # 0.
In this case, for any 0 fized, since ¢y > 0,

lim [f(z)| = 0.

|z]—0
As a consequence, f is continuous at 0 if ¢; > 0.
In summary, f is continuous at 0 if and only if Rec > 0.
Example 5.13. Let f be the principal square-root function defined by
|Z’1/2€iArgz/2 ZfZ#O,
fz) = .
0 if z=0.

Then f is discontinuous on S = {z € C: Rez < 0,Imz = 0}. To see this, given a point —R €
S, R >0, we can draw a circle centered at 0 with radius R. If we approach —R along the circle
from above, the limit equals to vV Re'™? = \/Ri. On the other hand, if we approach —R along
the circle from below, the limit equals to v/ Re ™2 = —\/Ri. Consequently, f does not have a
limit at —R, and thus is discontinuous there.
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6 Differentiability of Functions and the Cauchy-Riemann
Equations

Definition 6.1. Let f be a function on an open set Q). f is differentiable or holomorphic at
zo € Q if the limit

o 1) = 1)

Z2—20 Z — 20

exists. And the limit, if it exists, is called the derivative of f at zy and denoted by f'(zo). The
function f is said to be differentiable (or holomorphic) on Q if it is differentiable at every point
of €.

Example 6.2. Let f(z) =1/z on C\{0}. At each zy # 0, we have

1 1
f(z) = f(=0) oz ox L
Z— 20 Z— 20 0%
Therefore,
fim L&) = IG0) 1
=z 2 — 2 25

1
That is, f is differentiable at zo # 0, and f'(20) = ——.
<0

Example 6.3. Let f(z) =Z on C. For any zy € C, we have

fe)—fn) _zZ-%% w
z2— 2 2=z w
z)— f(z
where w = z — zy. Suppose that the limit lim,_, ,, M exists, then equivalently the limat
zZ— 20

w w

lim,,_,o — exists. A same argument in Example 5.5 implies that — does not have a limit at 0.
w w

Therefore, f is not differentiable at every zg € C.

Example 6.4. Let f(z) = ¢ for some ¢ € C, then f is differentiable on C with
f'(z)=0.
Let g(z) = 2™ for some n € N, then g is differentiable on C with

n—1

g (z) =nz

Moreover, for a polynomial P(2) = ap + a1z + ... + a,2", ag, a1, ...,a, € C, P is differentiable
on C with
P'(2) = a; +2az + ... +na,z"".

Proposition 6.5. If f and g are differentiable functions on ), then

18



(i) f+ g is differentiable on Q, and (f +g) = f + 7.
(ii) fg is differentiable on 2, and (fg) = f'g+ f¢'.
(111) If g(z0) # 0 for zy € Q, then f/g is differentiable at zy, and

([)’ _fl9—1d

g 92

Moreover, iof f : Q1 — Q9 and g : Q9 — C are differentiable, then the composition g o f is
differentiable on 1, and the chain rule holds

(9 (f()) =g (f(2)) f'(2).
Example 6.6. Let f(z) = |z|? on C. At each z € C, we have
PG = FGo) _ [P = L2l

zZ— 20 Z— 20

By letting w = z — 2,

12 = Jw + 20]* = (w + 20) (W + Z) = W + wZy + 200 + |2|*.

Thus,
f(z) = f(20) :ww+wzo+Zow:w+_0+ZOE‘ (6.1)
zZ— 2 w w
If 20 =0, (6.1) becomes
f6) - 10 _
z—0

which implies

1imM = lim w = 0.

z—0 z—0 w—0

Hence, f is differentiable at 0 with f'(0) = 0. But if 20 # 0, the last term on the right-hand

side of (6.1), i.e., zo E, has no limit at zg as w — 0. Therefore, f is not differentiable at every
w

20 7é 0.

Remark 6.7. Ezample 6.6 illustrates the following facts.

(i) A function can be differentiable at a point z, but nowhere else in any neighborhood of that
point.

(i1) By writing a function f in the form f(z) = u(z,y) + w(x,y), z =  + yi, we may have
u and v are both differentiable of all orders in variables (x,y) at a point (xg,yo), but f is
not differentiable at zo = xo + Yoi.

(11i) The continuity of a function at a point does not imply the differentiability of the function
there.
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Proposition 6.8. If f is differentiable at zy, then f is continuous at 2.

Proof.

lim (f(z) — f(2)) = lim JE) = 1) (z—20) = f'(20) -0 =0.

Z—r20 Z—r20 Z — ZO Z—r20

]

Theorem 6.9. Let f(z) = u(x,y) + w(x,y), 2z = = + yi, be defined on a neighborhood of
20 = xo+yoi. If f is differentiable at zy, then the partial derivatives of u and v exist and satisfy
the Cauchy-Riemann equations

Uy =Vy and Uy = —U,
at (xo,%0). Moreover, f'(zy) can be written as
f'(20) = ua (w0, Yo) + iva (0, Yo)-

Proof. Since f'(zy) exists, using the definition of f’(z9) and approaching zy = zg + yoi by
(xo + h) + yoi with h € R,

J((zo + h) +yoi) — (2o + yoi)

/ BT
f(z0) = Jim h
— lim u(zo + h, yo) — (o, Yo) 1 v(xo + h, yo) — v(x0o, Yo)
h—0 h h

= U, (0, Yo) + 10z(x0, Yo)-

On the other hand, we can also approach zy = x¢ + yoi by zo + (yo + h)i with h € R, which
gives

f(xo + (yo + h)i) — f(xo + yoi)

f,(Zo) = lim

h—0 1h
= lim | —1 U(CC(), Yo + h) — U(LEO7 ?JO) + U(l‘o, Yo + h) — U([L'(), yO)
h—0 h n

= vy (o, Yo) — 1uy(Z0, Yo)-
Then we compete the proof by matching the real and imaginary parts of these two equalities. [

Example 6.10. Recall that in Example 6.6, f(z) = |z|* is differentiable only at z = 0 with
f'(0) = 0. Notice that f(z) = u(x,y) +iv(x,y), z = x + yi, with

u(z,y) =2>+y* and v(z,y)=0.
It holds that u and v satisfy the Cauchy-Riemann equations at (0,0). And we have
1(0) = 0 = ug(0,0) + iv,(0,0).

But f cannot be differentiable at any z # 0 since u and v do not satisfy the Cauchy-Riemann
equations there.
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Example 6.11. Let f(z) = u(z,y) + iv(x,y), 2 = x + yi, be defined by
72/ z, if 2z # 0,
£(2) = { /

0, if z=0,
then
z3 — 3zy? —3z%y + ¢*
u(z,y) = PN and v(x,y) = T
if (x,y) # (0,0). Also, u(0,0) =v(0,0) = 0. Notice that
. u(h,0) —u(0,0) . h
B T
and
. v(0,h)=v(0,0) . h
w00 =i T !
We have u, = v, at (0,0). Similarly, we have u, = —v, = 0 at (0,0). That is, the Cauchy-

Riemann equations are satisfied at z = 0. In contrast, for 2z # 0,
f(2) = £0) _ (Z\?
z—0 z

does not have a limit as z — 0. To see this, if we approach 0 by z = pe'® for some fived 6y € R

and let p — 0, we have
-\ 2
<z) — 6_4i00.
z

We will get different limits as p — 0 with different 6y’s.

Theorem 6.12. Let f(z) = u(x,y)+iv(x,y), z = x+yi, be defined on an open set Q. If u and v
are continuously differentiable and satisfy the Cauchy-Riemann equations at zg = xo+ yoi € §2,
then f is differentiable at zo with

f'(20) = uz(20, Y0) + vz (20, Y0)-
Proof. By the continuous differentiability of v and v,
w(zo + ha, yo + ha) — u(wo, yo) = uz(To, yo)h1 + uy(2o, yo)ha + @1 (h)|A],
v(zo + hi, Yo + he) — v(2o, Yo) = va(To, Yo)h1 + vy (T, yo)ha + d2(h)|A],
where 1(h), p2(h) — 0 as h — 0, h = hy + hgi. Then we have
f(z0+h) = f(2)
= (ua (20, 90) + 10a(0, Y0)) Py + (uy (20, y0) + vy (20, y0)) ha + (1(h) 4 ip2(h)) |h].
Using the Cauchy-Riemann equations, the above equality becomes
f(z0+h) = f(z0)
= (uz(70, Yo) + 10z(0, Y0)) M1 + (—v2(Z0, Yo) + iuz(20, Y0)) ha + (p1(h) + ip2(h)) | A
= (ua (20, Y0) + 10z (0, o)) (ha + hat) + (@1(h) +ip2(h)) |h].

By passing to the limit h — 0, we complete the proof. O
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Example 6.13. Recall that in Example 6.11, f(z) = u(z,y) +iv(x,y), z = x + yi, defined by

)7z if z# 0,
f(z)_{o if2=0.

Though u and v satisfy the Cauchy-Riemann equations at (z,y) = (0,0), the partial derivatives
of uw and v are not continuous at (0,0). The assumptions of Theorem 6.12 do not holds.

Example 6.14. Consider the function f(z) = e* = €e” (cosy + isiny), where z = x +yi. Then
we have f(z) = u(z,y) +iv(x,y) with

u(z,y) = e cosy and v(r,y) = e siny.
Notice that u and v are both continuously differentiable and satisfy
uy =e“cosy =v, and u, = —e’siny = —v,.
for all (x,y) € R%. Therefore, f is differentiable on C with
f'=uy +iv, = € cosy +ie” siny.

Note that f'(z) = f(z) for all z € C.
Example 6.15. Let f(z) = 2 +i(1 —y)3, z = 2 + yi. Then f(z) = u(z,y) + iv(x,y) with

u(z,y) =2 and v(z,y) = (1 —y)>

First, notice that v and v are continuously differentiable on R%. As for the Cauchy-Riemann
equations,

uy = 32%,  wu, =0,
vy =0, vy, = —3(1 —y)*

Then we always have v, = —v,. Butu, = v, only if (x,y) = (0,1). Therefore, f is differentiable
only at z =1 with

1) = ug(0,1) + iv,(0,1) = 0.
Example 6.16. Let f(z) =sinxcoshy +icosxsinhy, z =x 4+ yi € C. Then f = u+ iv with
u(z,y) =sinzcoshy and wv(x,y) = coszsinhy.
Since u and v are continuously differentiable and satisfy
uy = cosxcoshy =v, and wu, =sinzsinhy = —v,
everywhere, we conclude that f is differentiable on C with
f'(2) = uy + v, = cosx coshy — i sin x sinh y.

Theorem 6.17. If f'(z) =0 on an open connected set €2, then f is a constant on €.
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Lemma 6.18. If an open set ) is connected, then it is polygonally connected. That is, for
any z1,2 € §2, z1 and zy can be connected by a polygonal line consisting of finitely many line
segments in 2.

Proof. 1f Q) = ¢, then there is nothing to prove. By choosing a point zy € 2, we define the set
S ={z € Q:z can be connected to z, by a polygonal line} .

Given a point z; € S, since € is open, there is & > 0 small enough such that B, (z1) C Q.
Notice that any point in B.,(2;) can be connected to z; by a line segment. Thus, B, (z1) C S,
which implies that S is open.

Suppose that Q\S # ¢, say, there is zo € Q\S. Again, we have B.,(z2) C S for some g5 > 0.
All point in B.,(z2) do not belong to S. Otherwise, z can be polygonally connected to z.
Thus, Q\S is also open, which leads a contradiction. We conclude that Q\S = ¢, i.e., S = Q.
Therefore, for any two points wy,wy € €2, they can be connected by a polygonal line in €2 by
combining one polygonal line connecting 2, to w; and another one connecting zy to ws. O

Proof of Theorem 6.17. Let f(z) = u(z,y) +iv(z,y) for z = x 4+ yi. Since f'(z) =0,
f(2) = ug(x,y) + iv.(x,y) = 0.

In view of the Cauchy-Riemann equations, we have
Uy = Uy =V =V, =0 on

Next, if 21, 2o € £ such that the line segment L between z; and z; lie in 2, we will show that
f(z) is a constant on L. L can be parametrized by

L={zn+sw:s€e|0,]n—2l},

. Z9 —Z1 . . . . .
where w = w; + wqt = is the unit vector in the direction from z; to z. Now, we

|22 — 21]
consider the restriction of u on L, i.e., u(xy + wys,y; + was), where z; = x1 + yi. We have

—u(xy + w18, Y1 + waes) = Vu

ds

. w)
(z14+wis,y1+was)

where Vu = (uy, u,) is the gradient of w. Since u, = u, = 0, it follows that

d

%u(xl + wiS,y1 +wes) =0 on [0, |20 — zlﬂ

This gives u is a constant on L. Since there is always a finite number of line segments connecting
any two points in €2, u is a constant on 2. Similarly, by applying the same arguments to v, v

is a constant on (). Therefore, f is a constant on (2. O]

Example 6.19. Suppose that f and f are both differentiable on an open connected set 2, we
show that f must be a constant.

By writing f(z) = u(z,y) +iv(z,y), z = © + yi, we have f(z) = u(z,y) — iv(x,y). Since f
1s differentiable on €2, the Cauchy-Riemann equations

Uy =vy and uy, = —v, hold on .
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Since f is also differentiable on 0, the Cauchy-Riemann equations
Uy = —vy and Uy, =v, hold on ).

Therefore, we have u, = u, = v, = v, = 0 on Q, which implies f'(z) =0 on Q. By Theorem
6.17, f is a constant.

Example 6.20. Suppose that f is differentiable on an open connected set Q). If |f| is a constant
on §2, we show that f must be a constant.
If |f| = 0 on Q, then it follows that f = 0 on Q. Now, we assume that |f| = ¢ # 0 on Q,

we have

FfE) =fP = #0.
Notice that f # 0 on 2. And hence

1s differentiable on ). The last example implies that f is a constant.

7 Analyticity and Harmonicity

Definition 7.1. Let f be a function defined on an open set & C C. f is called analytic at
a point zo € Q if f is differentiable on a neighborhood B.(zy) C § for some ¢ > 0. If f is
differentiable on €2, then we also called f is analytic on Q2. Moreover, if f is differentiable or
analytic on 2, we call f an entire function.

Remark 7.2. In some literatures, the analyticity f is defined as follows: f is called analytic
at a point zy € S if there is a power series Y a,(z — z9)"™ with a radius of convergence such that

f(z) = Z an(z — 29)"

for all z € B.(z9) C Q for some ¢ > 0. And f is called analytic on Q) if f has a power
series expansion at every point in 2. It can be proved that the two definitions of analyticity are
equivalent.

Example 7.3. f(z) = 1/z is differentiable on C\{0}with f'(z) = —1/2* for = # 0. So f is
analytic on C\{0}. g(z) = |z|? is differentiable only at = = 0. Thus, g is not analytic anywhere.
Finally, we have that every polynomial is an entire function.

Theorem 7.4. Suppost that f = u + iv is analytic on an open set Q). Then u and v are
harmonic functions on €.

Proof. To show this, we need to use the fact that if a complex function is analytic at a point,
then its real and imaginary parts have continuous partial derivatives of all orders there.
Since v and v satisfy the Cauchy-Riemann equations, it holds that

uy =v, and u, = —v, on
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Therefore,

Upy = Vgy and Uy = —Vyy on (L
We get
Upg + Uyy = Vgy — Uy = 0 on 0.
That is, v is a harmonic function on 2. The arguments for v is similar. O

8 Integrals
Definition 8.1. Let w be a complez-valued function of a real variable t, written as
w(t) = u(t) +iv(t),

for some real-valued functions u and v. The derivative of w is defined by

d / ! iy
%w(t) =w'(t) =u'(t) +iv' (1),

provided that u and v are differentiable. And the definite integral of w over an interval |a,b] is

defined by
b b b
/"wump:/‘mwﬁ+¢/jmﬂﬁ

provided the integrals on the right-hand side exist.

Example 8.2.

/4 w/4 /4 w/4
/ edt = / (cost +isint)dt = / cos tdt + @/ sin tdt
0 0 0 0
/4 /4 \/§ ( \/5) »
i

+i(—cost) =5+ 1—7

= sint

0 0

Proposition 8.3. Ifw(t) = u(t)+iv(t) is a complex-valued function on [a,b], and W'(t) = w(t),
ie., W(t) =U(t) + iV (t) with U'(t) = u(t), V'(t) = v(t), then

Proof. By the fundamental theorem of calculus,

/%@ﬁzU@—U@)mﬁ /%mﬁ:vw—vmy
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Example 8.4. Since

d e it
— =
dt i ’
we have
/4 it |7/4 4 /4 2 2 2 2
/ e”dtze—, = —ie'| = —i \/——+£i—1 :£—|— 1—£ 0.
0 iy . 2 2 2 2
Definition 8.5. A (parametrized) curve 7y is a set
v = {2 = 2(t) = 2(t) + y(t)i £ € [, ]}, (5.1)

where x(t) and y(t) are continuous real functions on [a,b]. ~ is called a simple curve or a
Jordan curve if it does not intersect itself, that is, z(t1) # z(t2) unless t; = ta. 7y is called a
simple closed curve if it does not intersect itself except for z(a) = z(b). If x(t) and y(t) are
continuously differentiable on [a,b], then v is called a smooth curve. 7 is called a piecewise
smooth curve if there are points

a=ag<a <..<a,=">,
such that x(t) and y(t) are smooth in each interval [ax—_y,ar], k =1,...,n.
Remark 8.6.

(i) The set defined by (8.1) is only a geometric object, which does not have a direction. But if
we parametrize it by the parametrization z(t) = x(t)+y(t)i, then it is assigned a direction.

(i) The length of a smooth curve v = {z = z(t) : t € [a,b]} is

b
length(v):/ |12 (¢)|dt.

If v is only piecewise smooth, its length is the sum of the lengths of its smooth parts.

Definition 8.7. Given curve v defined in (8.1), we use —v to denote the same set of points of
(8.1) but with reverse direction, say,

—y={z(a+b—1t):t € lab}.

Definition 8.8. Two parametrization z,(t) : [a,b] — C and 2z(t) : [c,d] — C are called

equivalent if there exists a continuously differentiable bijection s — t(s) from [c,d] to |a,b] such
that t'(s) > 0 and

29(8) = z1(t(s)).
Example 8.9. Here are some examples of curves.

(i) The polygonal line defined by

Z(t):{t—l—it, tel0,1],

t+1, tell,2]),

18 a piecewise smooth curve.
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(ii) The unit circle with parametrization

1s a stmple closed smooth curve.

(iii) If v be the unit circle defined in (ii). Then —~ can be defined by the parametrization

2(0) =e" 60,27,

() Given m € Z\{0}, the curve defined by
2(0) =™, 6 €|0,27],

winds around the origin m times counterclockwise if m > 0. If m < 0, it winds around
the origin m times clockwise.

Formal Calculation. Suppose that there is a differentiable function F = U + iV such that
= f on Q, we have, by using the Cauchy-Riemann equations,

)
x(l‘(t )ﬂfl(f) (0)y'(t) +iVa(a(t), y(2))a'(t) + iV, (x(t), y(1))y'(t
Ux(m(t )z’ (t) — Vx z(t), y(0))y' (t) — iV (z(t), y(£)2'(t) + iU (x(t), y(¢))y' (¢
= (Ua((t),y(t)) + iVa(a(t), y(1)) (' (t) + iy'(t))
f(2()2 (1) (8.2)

Then Proposition 8.3 implies that

/ F0))Z (H)dt = F(z(b) — F(z(a)).

Definition 8.10. Let v be a smooth curve with parametrization z(t), t € la,b]. If f is a
continuous function on an open set {2 containing v, we define

[ = [ ) (i

If v is only piecewise smooth, which is smooth on intervals [ax_1,ai|, k = 1,...,n, where a =
ag < ay < ...<a,=>o, then

/ f(2)dz = Z )2 ()dt.

k1ak1

Remark 8.11. The definition of integrals of functions along a curve ~ is independent of the
choice of the parametrization for ~y. For

vy={z=2z(t):t € [a,b]}
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and an equivalent parametrization zy : [c,d] — C with

2(s) = z1(t(s)), t'(s) >0,

/f(zl(t))%(t)dtz/ f(zl(t(S)))Zi(t(S))t’(S)dS=/ f(z2(s))25(s)ds

Proposition 8.12.
(i) If c1,co € C, then

/7(01f1( z) + cafa(2) /f1 dZ+Cz/f2
/ FOLES / F(z)dz

we have

(i)

(iii)

< sup|f(2)| - length(~).

zey

Proof. Without loss of generality, we assume that 7 is smooth. Part (i) follows the linearity of
the Riemann integrals. For (ii), if

v ={z=2(t) € o]},

we have
/ f(z dz-/f (a+b—39))(z(a+b—35)) /f (a+b—s))2'(a+b—s)ds
- [ st == [ seensioa=- | s
For (iii),
] < sup O [ 1201 = sup 1 72) - engine),
tela,b] z€Yy
]

Example 8.13. To evaluate

@

v < ’

where v = {z =€ : 6 € [0,7]}, it holds

d
/—Z / ezezede—z/ df = mi.
-4 et
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Example 8.14. Let v be a smooth curve with parametrization z(t), t € |a,b]. Notice that

d

Z(2(0) =2:(0)2(1),

it holds

1
2

/yzdz _ /abz(t)Z’(t)dt — %(z(t))z

a

Example 8.15. Let v, be the polygonal line starting from 0 to v, and then coming from i to
1414, then

Let 5 be the line segment from 0 to 1+ i, then

1
/ (y—x—3x2¢)dz:/ (t—t—3t%) (1+4i)dt =1 —i.
Y2 0
Example 8.16. Let v be the semicircular path parametrized by
2(0) = 3e", 00,7,

and f(z) = 22 be defined by using the branch of the logarithm

3
logz=1In|z| +i0, 0 ¢€argz, 96(—%,%).

Then

/f(Z)dZ _ / (367j9)1/2 3@629d9 _ / e%(1n3+i9)3i6i9d9 _ 3\/32/ e3i9/2d9
Y 0 0 0

=2V3 (™2 1) = —2v3 (1 +1).
Example 8.17. Let v be the unit circle with parametrization

2(0)=¢€”,  0¢c[-m ]

And let f(z) = 27" be defined by using the principal branch of the logarithm. Notice that f is
defined only for 6 € (—m,m) on 7. On the other hand, for 0 € (—m,m),

f(2(0)2'(0) = e 7140 — o6

is continuous in (—m,m) and has limits at @ = £w. Thus, the (improper) integral exists and

//f(z)dz = /7; ie ldh =i (e’r — e’”) .
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Example 8.18. To estimate

-2
/ Z4 dz|, where 7y is the arc of the circle |z| =2 from z = 2
AR

to z = 2i, we have

z—2 |z| + 2 4
< = — =2.
24—|—1‘ Sppoi o1
Therefore,
z—2 4 AT
dz| < —length(y) = —.
Az4+1 | < 15 length(n) = 1
Example 8.19. Let vg be the semicircle parametrized by
2(0) = R, 6 €0, 7).
We are going to show that
z+1
li dz=0
R /m (224+4)(22+9) :
without actually evaluating the integral. Notice that
z+1 2| +1 R+1 R>3
= on .
(Z2+4) (22 +9)| 7 (]2 =4)(]z7=9)  (B?—4)(R* -9 s
Thus, for R > 3,
z+1 R+1
dz| < TR —0 as R — oo.
AR 242+ | S (R-_D(ER—9) "

As a consequence, we obtain the limit

z+1
li dz = 0.
R /m (224+4)(2249) :

9 Antiderivatives and Independence of Path

Definition 9.1. Let f be a function defined on an open connected set 2. If there is a differen-
tiable function F such that F' = f on ), then we call F' an antiderivative of f.

Remark 9.2. Antiderivatives of a given function are unique up to a constant.

Theorem 9.3. Let f be a continuous function on an open connected set ). If f has an
antiderivative F' on ), then for any piecewise smooth curve v from z; to zo for some zq, 2o € €2,
we have

/f(z)dz = F(29) — F(21)-

Remark 9.4. In particular, if f has an antiderivative, then the integral of f along any piecewise
smooth closed curve equals to 0.
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Proof. Let v be parametrized by z(t) : [a,b] — Q. If 7 is smooth, then, as in (8.2),

/f(Z)dZ =/ f(1)2 (t)dt =/ %F(Z(t))dt = F(2(0)) = F(2(a)) = F(2) — F(z).

If v is only piecewise smooth, let z be smooth on each interval [ay_1,ax], K = 1,...,n, where
a=ay<a; <..<a,=0>. Then

/f(z)dz =Y [F(a(ar)) = F(z(ax-1))] = F(2(b) = F(2(a)) = F(z2) = F(z).

Theorem 9.5. Let f be a continuous function on an open connected set €. If

/Wf(z)dz =0

for all piecewise smooth closed curve in ), then f has an antiderivative.

Lemma 9.6. Under the same assumption as in Theorem 9.5, given zy, zo € €2,

/71 f(2)dz = /W2 f(z)dz

for any piecewise smooth curves vy, and 7o from zy to z.

Proof. Let v, and 7, be two piecewise smooth curves from z; to 2z, 21, 25 € ), we have

[ erie= [ stri= [ =

Proof of Theorem 9.5. Fix zy € Q. In view of Lemma 9.6, we can define a function

F(z) = fw)dw, ze€Q,

Vzg,z

where 7., . is any smooth curve from zy to z. Then, for each z € Q and h € C with |h|
sufficiently small,

F(z4+h)—F(2) = / fw)dw — (w)dw = / f(w)dw,

where 7, .- denotes a curve lying in € from z to 2’. Since the integration is independent of the
choice of curves, we have

F(z 4 h) — F(z) = /01 F(=+ ht)hdt,
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and hence

A CRT [ G n = g = [+ h) = g

Notice that by the continuity of f,

/0 [f(z+ ht) — f(2)] dt‘ < sup |f(z+ht)— f(2)] =0 ash—0,

te[0,1]
which implies

lim F(z—l—h]z—F(z) _ 1)

h—0

Remark 9.7. To summarize, the following three statements are equivalent.
(i) f has an antiderivative.
(i1) Integration of f from one point to another is independent of the choice of curves.

(#11) Integrals of f along closed curves have value 0.

Example 9.8. The continuous function f(z) = €™ has an antiderivative F(z) = e™ /7 on C.
Hence, for any piecewise smooth curve «y from i to i/2, we have

eﬂ'Z
/ e€dz =
- T

Example 9.9. The function f(z) = 1/2* has an antiderivative F(z) = —1/z on C\{0}. Hence,
dz

)
y 2

P4y

/e

i

=0,

where 7 is the unit circle parametrized by 2(0) = €, 0 € [~ 71]. As for the function g(z) = 1/z,
the integral of g along v cannot be evaluated in a similar way. Notice that given a branch of
the logarithm, G(z) = log z is an antiderivative of 1/z on the domain where the logarithm is
defined. But the domain of G cannot contain the whole curve ~.

Example 9.10. To evaluate the integral
dz

Y

’YZ

where v is defined as in Example 9.9, we can divide 7y into two parts: 1 is the right half from —i

to i parametrized by z1(0) = €, 0 € [—g, g], and 7y 1s the left half from i to —i parametrized
, 3

by (0) =€, 0 € {g, ?ﬂ} . For vy, we know that the principal branch of the logarithm is an

antiderivative of 1/z on an open set containing ;. Thus,

=logi — log(—i) = %Z - (—W—Z) = i,

dz
— =logz
z

71

—1
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where we used the principal branch of the logarithm here. As for ~s, by using the branch of the
logarithm

logz = In|z| +1i0, whered € argz, 6 € (0,2n),

defined on {|z| > 0, Arg z # 0}, we have

dz -
— =logz
z

7

3me i
—loo(—i) —logi = — — _° — ;.
| og(—i) — logi 5 5 =™

)

/dz / dz dz )
— = — 4+ — = 2m.
vy Z Y1 z 2 z

Example 9.11. Let f be the square-root function on {|Z| > 0,Arg z # —g} defined by

Therefore,

. , 3
f(z) = 22 = enlo8s — 2|26 Gf o — ||, G e (—g, ?ﬂ) :

That is, the power function is defined by using the following branch of the logarithm

3
logz=1In|z| +1i0, wheref € argz, 60 ¢€ (—g, ?ﬂ) .

If v is a curve from —3 to 3 lying above the real axis except for the endpoints, noticing that

<Z3/2)' _ gzl/Q’

we have

= 2V3(1+14).

3
-3

/f(z)dz = 223/2

10 Integration of Analytic Functions on Closed Loops

Theorem 10.1 (Cauchy-Goursat theorem). If f is analytic at all points interior to and on a
simple closed curve v, then

Af@ﬂzz&

Theorem 10.2. If f is differentiable on an open set 2, and v is the boundary of an rectangle
contained in €1, then

Af@ﬂz:O
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Proof. Let Ry be the closed rectangle with boundary ~. Assume that 79 =~ =1 Uls Ul3Uly,
counterclockwise oriented. Let z; be the midpoint of I, k = 1,...,4. By connecting z; and z3,
and connecting 2, and z4, we obtain four smaller rectangles with boundaries 7, 1, 71,2, 71,3 and
71,4. We assume that v, ;, j = 1, ..., 4, are all counterclockwise oriented. We have

/f dz—/f dz+/f dz+/f dz—l—/f

By the triangle inequality,
= / f(z)dz| + / f(z)dz| + / f(z)dz| + / f(z)dz
V1,1 Y1,2 71,3 V1,4
| e
V1,5

There must be a j € {1,2,3,4} such that
/ f(2)dz
Yo
Let 1 = 71; with j such that the last inequality holds, and R; be the closed rectangle with
boundary ~;. We can repeat the same process. For v, given, we divide the rectangle into four
parts with boundary v,+1,;, j = 1,...,4. And we can choose a j such that

/%HJ f(2)dz].

And then we denote 7,41 = Yny1,; With j such that the last inequality holds. We obtain a
sequence of rectangles R,, with boundaries v,, n € NU {0}, such that

<4

f(2)dz

<4

RyDRiD..DOR,D ... (10.1)

/70 f(2)dz /% f(2)dz

Since R,,’s are compact satisfying (10.1) with diam(R,) — 0 as n — oo, there is a unique
2o € €2 such that zg € R, for all n. Since f is differentiable at 2z,

f(z) — (%)

zZ— 20

and

< 4 (10.2)

lim

Z—r20

— f/(Zo)‘ =0.
On each ~,, since constants and polynomials have antiderivatives,

[f(Z) — f(20)

[ sz = [ 1= s - ot = o= = [ =] (o st

Tn <z 20
Therefore,
f Ydz| < sup M — f'(20)| sup |z — 20} - length(y,).
2En Z =20 2E€Yn
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Notice that

sup |z — zo| <27"L,
ZEYn

where L is the length of the diagonal of Ry, and

length(~,) = 2 "length(y).

Therefore,
/ f(z)dz| <47"L -length(y) sup ORFICON f'(zo)‘ : (10.3)
Y ZEYn Z— 20
Combining (10.2) and (10.3), we obtain
/f(z)dz < L - length(y) sup OFICON f’(zo)‘ — 0 asn— 0.
~ 2€EYn Z— 20

Theorem 10.3. If [ is differentiable on an open disc €2, then

l F(2)dz =0

for all closed curve v in Q.

Proof. Without loss of generality, we may assume that the disc is centered at 0. Define

F(z) = / e+ / Fe

where v; is the line segment from 0 to Re z, and 75 is the line segment from Rez to z. By
Theorem 10.2, for h = hy + hoi with |h| sufficiently small,

F(z+h)—F(z) = /f(z)dz,

where 7 is the polygonal line starting from z to z + h; and then from z + h; to z 4+ h. Using a
similar argument in the proof of Theorem 9.5,

F(z+h) — F(z)
L

1 1 1 ' |
— ‘E {/o (f(z+ hat) — f(Z))hldtJr/O (f(z + hy + ihys) — f(z))thds]
< sup [|f(z + hit) — f(2)] + | f(z + hy + ihes) — f(2)]]

t€[0,1], s€[0,1]
—0 ash—0.

That is, F' is an antiderivative of f, and hence the theorem follows. n
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Proof of Theorem 10.1. Let K be the closed region bounded by . By the assumption, f is
differentiable on some bounded open set € containing K, and we have dist(K,0Q) > 3¢ for
some £ > 0, where 0f) is the boundary of 2. We may assume [y = 7 is counterclockwise
oriented. And let [; be a simple closed curve lying in the interior of [y, also counterclockwise
oriented, such that dist(z,ly) < € for every z € [;. And then we slice the strip bounded by [
and [; into small pieces. Each piece is contained in a disc with radius 2¢ contained in €). By
Theorem 10.3, summing the integrals on the boundaries of all the pieces, we obtain

f(z)dz+ f(z)dz = 0.
lo I

Here the integrals on common edges are cancelled out. The above equality shows that
f(z)dz= [ f(z)d=.
lo ll

We can continue in this manner to obtain a sequence of simple closed curves ly, lo, ..., I, ...,
with length(l,,) — 0 as n — oo, and

f(2)dz :/ f(2)dz
In It
for all n € NU {0}. Therefore,

l f(2)dz= | f(2)dz

ln

for all n € N. In addition, for [,,, we have

z f(2)dz

< m}a{xxf -length(l,,) — 0 asn — oo.

Thus, we complete the proof.




Definition 10.4. A connected set ) is called simply connected if for any two curves vy and v,
in Q, parametrized by zy(t) and z,(t), t € [a,b], respectively, with same endpoints, there exists
a class of curves 7y parametrized by z4(t), t € [a,b], for s € [0,1], such that

zs(a) = zo(a) = z1(a) and z4(b) = zo(b) = z1(b) for all s € [0, 1],

and zs(t) is jointly continuous in (s,t) € [0,1] x [a,b]. If a connected set ) is not simply
connected, then it is called multiply connected.

Remark 10.5. There is an equivalent definition for simply connected sets as follows. A con-
nected set 2 is called simply connected if every simple closed curve in () encloses only points in

Q.

Theorem 10.6. If f is analytic on an open simply connected domain §2, then

/Wf(z)dz =0

for all closed curve ~ lying in 2.

Proof. It suffices to show that, given wy, ws € €2, the integral of f from w; to ws is independent
of the path. Let vy and 7, be two curves from w; to wy with 7; parametrized by z;(t), ¢t € [0, 1],
j =0,1. Since  is simply connected, we can find a class of curves v, parametrized by z,(t),
t € [0, 1] for each s € [0, 1] such that

2,(0) =w; and 2,(1)=w, forall s € [0,1].

and the function G(s,t) := zs(t) is continuous on [0, 1] x [0,1]. One can see that the image
K = G ([0,1] x [0,1]) is compact in 2, there is ¢ > 0 such that dist(K,9Q) > 3e. By the
uniform continuity of GG, there is 0 > 0 such that

sup |ZS1 (t) — sy (t>| <€
te(0,1]

provided |s; — so| < . Therefore, for any sy, s € [0, 1] with |s; — so| < 0, we can find finitely
many points 0 =ty < t; < ... < t, = 1 such that each closed curve Iy, k = 1, ..., n, consisting of
the curve from z,, (t5_1) to zs, (tx) along =, , the line segment from zg, (¢) to z,(tx), the curve
from zg, (tx_1) to zs,(tx) along 7s,, and the line segment from zg, (tx_1) to zs (tx_1), is contained
in a disc with radius 2¢ in 2. By Theorem 10.3, we have

A RELS / RECE W RECE

Dividing the interval [0, 1] into subintervals [sg_1, si] with length less than ¢ and repeating
finitely many times of the above argument, the theorem is proved. O]

Corollary 10.7. If f is analytic on an open simply connected domain, then f has an an-
tiderivative. And the integral of f from one point to another is independent of paths.

Example 10.8. Let vy be any closed curve lying in the disc By(0). Then

sin 2
——dz = 0.
A (21 9p
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Example 10.9. Let 2 be an open simply connected set with 1 € Q, 0 ¢ Q. Then there is a
branch of the logarithm f on € such that

f(x)=Inz forxzeR, x near]l.

It can be done by defining

1
for any curve v in  from 1 to z. Notice that the integral of — from 1 to z is independent of the
z

1
choice of v by Corollary 10.7. A similar argument in the proof of Theorem 9.5 gives f'(z) = —
z
on €2, and hence
(ze’f(z))/ =0 ond
Therefore, ze= ¥ is a constant. By taking the value at z = 1, we conclude that ze ) =1,

that is,

As for x € R near 1, we have

“dx
f(x) i nzx

Example 10.10. Let Q C C be an open simply connected set. If w is harmonic on {(z,y) :
x+yi € Q}, then there is an analytic function f on Q such that Re f(z) = u(x,y) for z = x+yi.
To see this, let

9(2) = ug(z,y) —iuy(z,y) for z =z +yi€ Q.

Then the real and imaginary parts of g are continuously differentiable and satisfy Cauchy-
Riemann equations on the domain. Thus, g is analytic on ). By Corollary 10.7, g has an
antiderivative F', that 1s,

F'(2) = g(2) = us(2,y) —iuy(z,y) for z=x+yie Q.
Let Re F(z) = w(z,y), by using the Cauchy-Riemann equations for F,
F'(2) = we(z,y) —iwy(x,y)  forz=1x+yi € Q.
Therefore,
(g, wy) = (Ug,uy) forxz+yi e,
which tmplies that w — v = ¢ is a real constant. And hence f = F — c is as desired.

For multiply connected domains, we have the following theorem.
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Theorem 10.11. Let Iy, Iy, ..., 1, be simple closed curves with counterclockwise orientation.
ly’s, k = 1,...,n, lying in the interior of ly, are disjoint, whose interiors have no points in
common. If f s analytic on all the curves and throughout the multiply connected domain
consisting of the points inside ly and exterior to each l, k =1, ...,n, then

lf(z)dz:z l f(2)dz.
0 k=1 Yk

Proof. The theorem follows by dividing the domain into finitely many simply connected do-
mains.

]

Corollary 10.12. Let v; and 2 be two simple closed curves with counterclockwise orientation.
And ~, lies in the interior enclosed by vo. If f is analytic on the closed set consisting of V1, Y2

and all points between them, then
/ f(2)dz = / f(2)dz.
71 Y2

Example 10.13. Let v be a simple closed curve with counterclockwise orientation surrounding
the origin. In order to evaluate the integral

dz

v ?

we notice that, as in Example 9.10,

dz

— = 2m
CZ

for any circle C' centered at the origin with counterclockwise orientation. Thus, by Corollary
10.12,

d
@ _ 271,

’YZ
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11 Cauchy Integral Formula

Theorem 11.1 (Cauchy integral formula). Let Q is the open set enclosed by a simple closed
curve v with counterclockuise orientation. If f is analytic on €1, the closure of €1, then

FION

27m y 7 zo

f(Zo)

for all zy € €.

Proof. For zy € €1, let C, be the circle centered at z, with radius p sufficiently small such that
C, C Q2. We assume that C, is counterclockwise oriented. By Corollary 10.12,

FON O

Z—ZO C’pZ_ZO

Therefore, we have

/zfﬁiodz_f(%)/c ZEZOdz:/C %ﬁj%)dz (11.1)

As in Example 9.10,
1
/ dz = 2mi.
C, X T A0

/() ————dz = 2mif(z) = J&) = =) f(zo)dz.

Z—Zg C, zZ— 20

Then (11.1) becomes

For the right-hand side on the last equality, we have

C, =20 2€Q Z— 2
Here max M is finite since f is analytic on €. Since p is arbitrary, we conclude that
z€Q Z— 20
/(z) dz — 2mif(z) = 0.
y zZ— 20
The theorem then follows. O
Example 11.2. Let f(z) = %. To evaluate the integral
z

/ COS 2 d
—dz
L2 (22 49) 7

where 7y is the unit circle centered at the origin with counterclockwise orientation, we have
CoS 2 f(z 27?2
————dz = | —=dz=2m
/ (22 +9) / —0 mif(0) =~
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Theorem 11.3 (generalized Cauchy integral formula). Let € is the open set enclosed by a
simple closed curve v with counterclockwise orientation. If f is analytic on some open set
containing €1, the closure of 2, then f s differentiable of all orders in 2. Moreover,

for all zo € 2, n € NU{0}.

Proof. The proof is by induction on n. n = 0 is proved in Theorem 11.1. For n € N, suppose
that f is n — 1 times differentiable in 2 with

f("_l)(zo) _ (n — 1)' / f(2) d

2mi (z —2o)"

for all zy € Q2. Then for each zy € Q, |h| small enough such that zy + h € €2, we have

=1z — f (% n—1)!
fU (o +h) = f(20) 1)‘/]0(2)1{( 1 ! dz.

z—2zg—h)»  (z—z)"

h

h 271

Notice that

n—1

1 1 11T 1
(z—2—h)" (z2—2)" |z2—2—h 2z—2 — (z— 20— h)*(z — zp)"*
B h ”Z‘l 1
(2 =20 = h)(z = 20) &= (2 — 20 — h)*(z — 20)"F
Therefore,
(n—1) _ £(n—1) —1)! 1
e = e pATRL
h—0 h 2mi ), (z —20)% (2 — 2z0)" !
n! f(z)
=— [ —————d
271 [y (z — zp)"H! =
which completes the proof. ]

Example 11.4. Let f(z) = e**. To evaluate the integral

€2Z
—4dZ,
z

v

where 7y is the unit circle centered at the origin with counterclockwise orientation, we have

e f(2) 2mi 8i
—dz = dz = ——f®(0) = —.
4 [Y(z—oylz /(0 =3

Y

Corollary 11.5. If f is differentiable on an open set €, then f is differentiable of all orders
on ). As a consequence, the real and imaginary parts of f are continuously differentiable of all
orders.
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Proof. Given zy € (2, there is a disc B centered at zy such that the closure of B is contained in
Q2. Then we can apply Theorem 11.3 to conclude that f is differentiable of all orders in B. [

Remark 11.6. Corollary 11.5 is used in the proof of Theorem 7.4.

Theorem 11.7 (Morera’s theorem). Let f is continuous on an open connected set Q. If

/Wf(z)dz =0

for all closed curves in S), then f s differentiable on Q.

Proof. By Theorem 9.5, f has an antiderivative F. By Corollary 11.5, F' is differentiable of all
orders on 2. Hence, so is f. O]

Corollary 11.8 (Cauchy’s inequality). Suppose f is differentiable on an open set containing
the closure of a disc B centered at zy with radius R. Let v be the circle centered at zy with
radius R, counterclockwise oriented, then

n!max, |f(2)|

‘f(n)(Zo)} < i

for alln € NU{0}.

Proof. By Cauchy integral formula,

‘f(n)(zo)‘ —

n! f(z)
%[y (z — Zo>n+1dz

nl max, |f(2)]
- 97 Rn+l
n!max, | f(z)]

Rn

-2TR

]

12 Liouville’s Theorem and the Fundamental Theorem
of Algebra

Theorem 12.1 (Liouville’s theorem). If f is entire and bounded, then f is constant.

Proof. Since f is bounded, there is a positive constant M such that
f(2) <M

for all z € C. By Cauchy’s inequality,

[F'(2)] <

for any z € C and R > 0. Since R is arbitrary, we obtain that

| K

f'(z)=0 onC.

As a consequence, f is a constant on C. O]
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Theorem 12.2 (fundamental theorem of algebra). Any non-constant polynomial has at least
one root.

Proof. Suppose on the contrary that there is a polynomial
P(z)=ay+a1z+..+a,2", n>1, a,#0,

such that P(z) # 0 for all z € C. Then 1/P(z) is entire. Now, we claim that 1/P(z) is bounded.
Let

a a Ay
w(z):z—2+zni1+...+ Zl, z#0.

By the triangle inequality,

w(z)| < 2ol ol Jo]
2 T ]
By choosing R > 0 sufficiently large, we have
}’;k_‘k < % for k=0,1,....n—1,
which gives
|an|

lw| < o for all |z| > R.

Consequently,

la, +w| > |a,| — |w| > @ for all |z| > R.

Then we have

|P(2)| = |a, + w||z|" > @R” for all |z| > R,
and hence
1
‘P(z) < PRIZ for all |z| > R. (12.1)

Since 1/P(z) is continuous on the set {|z| < R}, it is bounded on {|z|] < R}. Therefore,
1/P(z) is entire and bounded. By Liouville’s theorem, 1/P(z) is a constant on C, which leads
a contradiction. ]

Corollary 12.3. A polynomial P of order n, n > 1 has precisely n roots in C. P can be
expressed as

P(z)=c(z — z1)(z — z2)...(2 — zn),

where ¢, z1, ..., z, are constants with ¢ # 0.
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Proof. For
P(z)=ap+ a1z + ... + a,2",
by Theorem 12.2, there is a root z; of P. We have

P(z) = P((z — z1) + 21)
=ao+ai((z—21)+21) + ... +a,((z —21) + 21)"
= bl(z - Zl) + bQ(Z — 21)2 + ...+ bn(z - 21>n

for some by, ...,b, € C, and b, = a,. Thus,

P(z) = (2 — 21) [b1 +bo(z—21) + .+ bp(z — Zl)nfl]

= (Z - Zl)@(z)a
where () is a polynomial of order n — 1. By Theorem 12.2 again, there is a root 2z, of Q). We
then prove the corollary inductively. O]

13 Maximum Modulus Principle

Theorem 13.1 (maximum modulus principle). If f is non-constant and analytic on an open
connected set ), then there is no point zy € 2 such that |f(2)| < |f(20)| for all z € Q.

Lemma 13.2. If |f(2)| < |f(z0)| for all z € Bgr(2p), then f(z) = f(20) for all z € Bgr(zp).

Proof. Let C, be the circle centered at z, with radius p € (0, R) and counterclockwise oriented.
By Cauchy integral formula,
1 z
e) = = [ L& 4

21t Jo, 2 — 2o

for all p € (0, R). Then

1
O < —
7Tp_27r

Fe0)] < o L) 2mp =11 (z0)

Cp |Z — Z()|

| f(20)|
P

for all p € (0, R). Thus both the inequalities above are equalities, which implies that

£ (2)] = [f(20)] on C,.

Since p € (0, R) is arbitrary, | f(z)| = |f(z0)] on Br(zp). By Example 6.20, f is a constant on
Br(z0), which completes the proof. O

Proof of Theorem 13.1. Suppose on the contrary that there is zy € € such that |f(z)] < |f(20)]
for all z € €. For any w € (), there is a polygonal line L connecting zp and w. Let 0 <
§ < dist(L,09), L can be covered by finitely many discs Bs(zx), 2z € L, k = 0,1,..., N, and
w = zy. Moreover, z; € Bs(z_1) for each k = 1,2,..., N. By Lemma 13.2, f is a constant on
Bs(zo). Thus f(z1) = f(20), and hence |f(z)| < |f(21)] on Bs(z1). Continue in this manner, we
conclude that f(w) = f(zp). That is, f is constant on €2, which leads a contradiction. O

Remark 13.3.
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(i) Under the assumptions of Theorem 13.1, if f is continuous on the closure of S0, then the
mazximum value of | f(2)| on the closure of Q must occur on the boundary of .

(i1) Applying Theorem 13.1 to 1/ f(z), the minimum of | f(2)| cannot be obtained at an interior
point of Q provided that f(z) # 0 for all z € Q.

(iii) Applying Theorem 13.1 to functions ef*) and e=/3) | similar properties hold for the real
and imaginary parts of f as in Theorem 13.1.

Example 13.4. We can use the mazimum modulus principle to prove the fundamental theorem
of algebra. Suppose that P is a non-constant polynomial of order n and has no root on C. Then
1/P(z) is analytic on Br(0) for all R > 0. Asin (12.1), we have

iE

on the circle {z : |z| = R}

<

= lan|R"

provided R sufficiently large. By the maximum modulus principle,
1

P(z)

2
<
= |a,|R™

on Bg(0).

Taking R — oo, we conclude that =0 on C, a contradiction.

1
P(z)
Example 13.5. Let f(z) = (z + 1)? be defined on the closed triangle T with vertices z = 0,

z =2 and z = i. Notice that |f(z)| can be interpreted as the square of the distance between —1
and z € T'. The mazimum and minimum values of | f(z)| occur at z = 2 and z = 0, respectively.

14 Taylor Series and Laurent Series

Definition 14.1. For z, € C, n € NU {0}, the series Zzn converges to the sum z if the

n=0
partial sum
N
Z Zn — 2 as N — oo.
n=0
If it does not converge, we say that it diverges. And we say that the series Zzn converges
n=0

absolutely if the series Z |zn| converges.

n=0

Proposition 14.2. Absolute convergence implies convergence.

Proposition 14.3. Given a power series Z a,z", there exists 0 < R < oo such that the series

n=0
converges absolutely if |z| < R and diverges if |z| > R. Moreover, R is given by

-1
R= (limsup\an|1/"> .

n—oo
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Definition 14.4. R given in Proposition 14.3 is called the radius of convergence of the power
series. And Br(0) is called the disc of convergence.

Proof. For |z| < R, there is € > 0 small enough such that
(R +e)lz]=r<1.
By the definition of R,
la,|'" < RVt ¢
for all n large, which gives

|an||2]" < (R7' +2)" |2]" ="

o o0
By a comparison with the series Z r", the series Z a,z" converges absolutely.
n=0 n=0
If |z| > R,
lim sup |a,2"| > limsup R™"|z|" = oc.
n—oo n—o0
Thus, the series cannot converge for |z| > R. O

Theorem 14.5. A function defined by a power series

oo

f(z)= Zanz”, a, € C,

n=0

with positive radius of convergence, is differentiable on its disc of convergence. And its derivative
can be represented by the power series

f'(z) = i na,z",
n=1

which has the same radius of convergence as f.

Proof. Let
o0
g(z) = Znanz".
n=1
Since
lim sup |a,|Y™ = lim sup |na,|*/™,
n—00 n—00

g has the same radius of convergence as f. Let R be the radius of convergence of f, and divide
f into

f(2) = Sn(2) + Rn(2),
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where

N [
Sn(z) = Zanz” and Ry(z) = Z anz".
n=0 n=N+1

For |zo| < r < R, |h| sufficiently small such that |zo + h| < r, we have

f(ZU + h])l - f(ZO) . g(zo>

_ (SN(ZO + hg — Sn(20) va(zo)) + (S (20) — g(=0)) + (RN(ZO + h;)l — RN(ZO))

Given € > 0, since

Ry (20 + h) — Rn(20) > (z0+h)" — 28 > —
‘ h S E |an| h S E |CLn|TLT Y
n=N+1 n=N+1

there is N; € N sufficiently large such that

‘RN<Z() + h) - RN(Z())
h

<<
3

for all h with |2y + h| < r and N > N;. Also, since

lim Sﬁv(zo) = 9(20),

N—oo

there is Ny € N sufficiently large such that

Sv(z0) = g(z0)| < 5

for all h with |zo + h| < 7 and N > Ny. Now, we fix N > max{Ny, N2}, there is § > 0 such
that

‘SN(ZO—i-h}z— SN(ZO) —S}V(ZO) < %
provided |h| < §. Therefore,
B) —
‘f(zo * })L flz0) —g(20)| <¢

provided |h| < 4§, that is,
f'(z0) = g(20).
]

Corollary 14.6. A function defined by a power series with positive radius of convergence is
infinitely many times differentiable on its disc of convergence. And all the higher derivatives
can be represented by the power series obtained by termuwise differentiation and have the same
radius of convergence as f.
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Theorem 14.7. Suppose that f is analytic on a disc Br(zp). Then f can be represented as

= Zan(z —20)", 2z € Br(2), (14.1)
where
(n)
a, = / (ZO), n € NU{0}.
n!
Remark 14.8.

(i) (14.1) is called the Taylor series of f about zy. In particular, if zo = 0, it is called the
Maclaurin series of f.

(i) The coefficients of Taylor series are unique.

Proof. Without loss of generality, we may assume that z; = 0. By Cauchy integral formula, for

any z € Bg(0),
_ 1 [ f(w)
)= 5 /7 . Zdw, (14.2)

lz| + R
2

and counterclockwise orientation. Notice

where -y is the circle centered at 0 with radius
that

1 1 N 1 o\ N+
w—z w. 1—z/w [Z< ) 1—z/w(a> ]
Thus, (14.2) becomes

10 =5 [ AP () oo [ (0

w ‘ -
2 [ f(w) Al f(w)
= — . 14.
Z 27i /7 wntl dw =+ 27i A (w — z)wN“dw (14.3)
By the generalized Cauchy integral formula,
(n)
fw) , f90)

2mi /., wntl n!

Thus, (14.3) reduces to

N
N M), M f(w)
=3 Ly 20 [

n=0

Now, let M = max, |f|, then

N+1 N+1 M R
: - / f(w>N+1dw‘ < 12 : N1 '27r< + |Z|)
2mi ), (w—2)w 2m R—1|z| (R+|7] 2
2 2
9 N+1
:M-R+|z|( 12 ) — 0 as N — oo.
— [zl \R + 7]
Therefore, we complete the proof. n
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z#1, neNU{0}.

Thus,

i on B1(0

n=0

As for the Taylor series of f about i, we have

Example 14.10. Let f(z) = e*. We have

Thus,
e = —  on C.

We can use the Taylor series of e* to show that

[o@)
2nm
e = E on C.
n!

n=0
Moreover,
> on n+3
¥ = - on C.
n!
n=0
) eiz _ e—iz
Example 14.11. Let f(z) =sinz = — We have
i
(n) ,L'neiz _ (_Z')ne—iz
" (z) = o on C, neNU{0}.
i
Thus,
Sinz—iL i . 2k+1 _iﬂz%JA on C
B (2k +1)! L (2k+1)! '
n=0 k=0 k=0
eiz + e—iz
Example 14.12. Let f(z) = cosz = — We have

Z’neiz + (_Z')nefiz

fM(z) = 5 on C, neNU{0}.
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Thus,

— "+ (=) 2 — i % _ — (=D 5
cosz:ZT-m:Z@k)!z —Z <2k)!z on C.

n=0 ’ k=0

cos z = i <(_—1)k (2 4 1)2% = i (_1*?,22’“ on C.

!
2o {2k + 1)

Example 14.13. Let f(z) = sinh z = eT. We have

z _ (_1)e?
f(")(z):6 (2 )e on C, neNU{0}.
Thus,
' e 1— (_1)n peg e 2k+1
SlnhZ—nZ:OT'—' kz 2]{;—|— (C
e“+e
Example 14.14. Let f(z) = coshz = . We have
z —1)re—%
Thus,
e I D L
coshz = Z —_— . — =
n=0 2 n! k=0

Theorem 14.15. Suppose that f is analytic on an annulus Br,(z)\Br,(20). Then f can be
represented as

= > culz—2)", 2 € Bry(20)\Br, (20), (14.5)
where
1
Cn = 5 —f(w)n+1 dw
2mi J., (w — 2o0)

with any simple closed curve vy in Br,(20)\Br, (20) around zy with counterclockwise orientation.
Remark 14.16.
(i) (14.5) is called the Laurent series of f about z.

(i1) If f is also analytic on Bg,(20), then the Taylor series of f and the Laurent series of f
about zy agree with each other. In fact, ¢, =0 for alln < 0 by Cauchy-Goursat theorem.
Moreover, by Cauchy integral formula, ¢, = a,, for n € NU{0}, where a,, are the Taylor

coefficients of f.
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(i1i) The coefficients of Laurent series are unique. Suppose that

o0 o0

Z cn(z —20)" = Z Cn(z — 20)"  on Br,(20)\Bg, (20)-

n=—oo n=—oo

Then, for m € Z,

e} o0

Z cn(z — 29)" " = Z Gz — 20)" ™ L.

n=—0oo n=—oo

nem—1 _ J2m ifn=m,
/7(2_20) B {0 if n #m,

for any simple closed curve v around zy with counterclockwise orientation, then we con-
clude

Since

Here the interchange of orders of summation and multiplication or integration can be
Justified by absolute convergence.

Proof. Without loss of generality, we may assume that zo = 0. For z € Bg,(0)\Bg, (0), let 7
and 7, be the circles centered at 0 with radius r; and ry, respectively, such that Ry < r; <
|z] < re < Ry. There is € > 0 sufficiently small such that the closed disk B.(z) is contained in
the annulus B,,(0)\B,,(0). Let v be the boundary of B.(z). We assume that v, v, and 7, are
all counterclockwise oriented. By Theorem 10.11,

[k e [mn s

By the Cauchy integral formula,

A%dw — i f(2).

Put this into (14.6), we obtain

_ 1 f(w) 1 f(w)
Notice that
1 1 1 1[N fzy\n 1 2\ N+
w—z w 1—z/w_ELZ%<E> 1—z/w<5> ]




for w € v;. Then (14.7) becomes

SN+ F(w)
d
Z 2mi w”Jrl dw =+ 2mi /72 (w — z)wN+1 v

N —(n+1) —(N+1)
z” f(w) z / f(w)
d dw.
POl A M ek
Now, let M = max,, s, | f|. Then
N+1 N+1 M
o / f(w)NHdw‘ = 2o NT1 2772
2mi )., (w— z)w o (ro — |2|)re
T ‘Z| N+1
(— —0 as N — >
ro — |2| \ re
and
—(N+1) —(N+1) M
2mi ), (2 — w)w= N+ o (Jz| = ry)ri—(V+D

, p\ N
— M. <—1> —0 as N — oo.
2| =71 \|#]

Therefore, we complete the proof.

Example 14.17. Let f(z) = m Since
1 o n_2n
T :;(—1) 2z < 1
Therefore,
1 0

=) (=" o<z < 1,

2(1+2%)  —~
is the Laurent series of f.

1
Example 14.18. Let f(z) = ° T For |z| < 1,
Z p—

o0 [e.9]

+1 1 1 n n =
2_1:—z~1_z—1_z:—zzoz —Zoz :—1—2212

which is the Taylor series of f. And for |z| > 1,

1
]__|__ 0o o)
241 . 1 1 1
- —(1+2)Y =142 =
z—1 1_1 ( +z) i + nzlz"’

z

which 1s the Laurent series of f.
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Example 14.19. Notice that

o0 -n

61/,2'222’277‘_‘7

n=0

which is the Laurent series of e/*. Let v be the circle centered at 0 with radius R, counter-

clockwise oriented. Then the coefficients of Laurent series

1 e1/z
Con = 5
2mi J., 27"

n € NU{0}.

dz =

Ha

It can be used to evaluate the integrals

1/z ;

e 21

[yzn+le:W, TLGNU{O}

For the sake of completion, we list some results used in this section as follows.

Proposition 14.20. If

o0 -1
f(z) = Zan(z —20)", |z—2|<R= <limsup |an|1/”> :

n—oo

i
=)

n

and g is a bounded and continuous function on Q C Bg(zy), then

F(2)90) = 3 ang(2)(z — )" on 2
n=0
Moreover, if v is a curve in €2, then
/f(z)g(z)dz = Z/ang(z)(z — 29)"dz.
Y n=0Y7

Lemma 14.21. If Ry < R, the series

o0
Z an(z — zo)"
n=0

absolutely converges uniformly on Br,(20).

Proof. The proof is similar to the proof of Proposition 14.3. There is € > 0 small enough such
that

(R'+e)Ry=r<1.
By the definition of R, for any z € Bg,(20),
|an||z — 2" < (R + s)nRg =",

which gives

% o PN+
Z lan ||z — zo|" < Z rt < :
1—r

n=N+1 n=N-+1
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Proof of Proposition 14.20. For each z € Bg(2), Zan(z — zp)" absolutely converges. In

n=0
particular, for z € €,
o0 o0
> lang(2)(z = z0)"| <suplgl- Y lanllz = z|" — 0
n=N+1 & n=N+1

as N — oo. Since vy € 2 C Bg(zp), there is Ry < R such that v € Bg,(z0). Thus, Z an(z—20)"
n=0
absolutely converges uniformly on . We have

/ 9(2) > an(z—z)"dz| <suplg|-sup| Y an(z — z)"| - length(y) — 0
v n=N-+1 v Y n=N+1
as N — o0. -
Corollary 14.22. [If
F) =3 culz—20)", Ri<|z—z| <Ry,

where

-1
Ry = timsup ey, and = (tmsup e, ")

n—o0 n—o0

and g is a bounded and continuous function on Q C {z € C: Ry < |z| < Ra}, then

o0

f(2)g(z) = Z cng(2)(z — 20)"  on Q.

n=—oo

Moreover, if v is a curve in €2, then

/ﬂc (2)9(2)d= = i /7 cn9(2)(z — 20)""dz.

n=—oo

15 Isolated Singularities

In this section, we assume that f is analytic on a punctured disc {z € C: 0 < |z — 2| < R}
for some R > 0. Since f is analytic on annulus Bgr(29)\B,(zo) for any r € (0, R), f can be
represented as Laurent series

o0

f(z) = Z cn(z —20)", T <|z—2]| <R,

n=—oo

where ¢, € C, n € Z. By the uniqueness of the coefficients of Laurent series, ¢,’s are indepen-
dent of r, and hence

[e.9]

f) =Y ealz—2)" 0<|z—z/<R (15.1)

n=—oo

There are three types of singularities: removable singularities, poles, and essential singularities.
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Definition 15.1. Let f be analytic on a punctured disc {z € C : 0 < |z — 29| < R} for some
R > 0 with representation (15.1).

(i) If ¢, =0 for all n < 0, then zy is called a removable singularity.

(i) If there is m € N such that c_,, # 0 and ¢, = 0 for all n < —m, then z is called a pole
of order m.

(iii) If there are infinitely many ¢, # 0 with n < 0, then z is called an essential singularity.

Example 15.2.

(i) Let f(z) = 20+ )

be defined on By(0)\{0}, then 0 is a pole of f.
(ii) Let f(z) = ¥ be defined on Bi(0)\{0}, then 0 is an essential singularity of f.
Proposition 15.3. If zy is a removable singularity of f, by defining
f(2), 0<|z—20] <R,

Co, Z = Z0,

then the function g is analytic on Bgr(2o).

Proof. Notice that

9(z) =3 ealz — )"

has the radius of convergence not less than R, otherwise f cannot be defined on Bgr(zo)\{z0}-
By Theorem 14.5, g is analytic on Bgr(zp). O

Proposition 15.4. If f is bounded and analytic on Bgr(z0)\{z20}. Then zy is a removable
singularity of f.

Proof. Notice that f can be represented as the Laurent series (15.1). In fact, by Theorem 14.15,

1
o= [ I nez,
2mi ), (w — 2)"

where 7, is the circle centered at z; with radius p and counterclockwise orientation, for any
p > 0. For each n < 0,

1 s S
o< Losldl sl

21 pn+1 pn
Since p is arbitrary, we conclude that ¢, = 0 for all n < 0. That is, 2y is a removable
singularity. O

Proposition 15.5. If zg is a pole of f, then

lim [f(z)] = oc.

Z—20
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Proof. 1f 2y is a pole of order m, m € N, we have

[e.e]

f(z) = Z cn(z—20)", 0<|z— 2| <R,

n=—m

where c¢_,, # 0. By letting
g(Z) (Z_ZO mf ZCan—ZO )

which is analytic on Br(z9)\{20}, then zj is a removable singularity of g with

lim g(2) = c_, #0.

Z—20

Therefore,

O

Proposition 15.6. If zy is an essential singularity of f, then for any c € C, there is a sequence
zZL — Zo such that

|f(z) —¢| — 0 as k — oo.
Proof. Suppose on the contrary that there are ¢ € C, g9 > 0 and ¢ € (0, R) such that

|f(2) —¢| >e9 forall z € Bs,(20)\{z20}

We define
009 = T o Bz}
Then g is analytic and
909 < = S o on Baleo\ o}

By Proposition 15.4, zy is a removable singularity of g. That is,

= Z CLn(Z — Z(])n on B50 (ZO)\{ZO}

for some a,, € C, n € NU{0}. If ag # 0, we have

lim g(Z) = Qo 7é 07

Z—Z20

which implies that

1 1
lim f(z) = lim — +c=—+c.
Z—r20 Z—r20 g(Z) ao
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Therefore, f is bounded on B, (z9)\{20} for some o > 0. By Proposition 15.4, z; is a removable
singularity of f, a contradiction. We must have ag = 0. Let N be the least number (if it exists)
such that

ag=a,=..=ay_1=0 and ay #0.
Define

h(z) = Zan+N(z — 29)"  on By, (z0),
n=0

which is analytic with h(zy) = ay # 0. Then

9(2) = (2 = 20)" Y an(z —20)" ™" = (2 — 20)"h(2) on By, (20)\{0}-
Moreover, on By, (20)\{20},
f(z)zi—i-c:;—i-c
9(2) h(z)(z = z)V

which implies that zj is a pole of order N of f, again a contradiction. As a consequence, a,, = 0
for all n € NU {0}, which implies that

9(z) =0 on Bs,(20)\{20}-
It is still impossible. We then complete the proof. O

Theorem 15.7 (Picard’s theorem). If zq is an essential singularity of f, then on any punctured
netghborhood of zy, [ takes all complex values, with at most one exception, infinitely often.

Example 15.8. Let f(z) = e'/*. Then 0 is an essential singularity of f. The value 0 is the
only exceptional value which cannot be taken by f on any punctured neighborhood of the point

0. For any non-zero complex value ¢ = pe’, we solve the equation
1

oz — ew(x—iy) _ pew —c, 2=+ (15.2)
We have
et/1P” = p and e WP = (0,
That 1s,
x
el |
E
and
% — O+2omr, nel
z
The last two equations imply
1
e = (Inp)® + (=0 + 2nw)>. (15.3)

Thus, we know that for each n € Z, z, = T, + ynt is a solution of (15.2), where
Inp —0+ 2nm
(Inp)” + (=0 + 2nm) (Inp)” + (=0 + 2nm)

By (15.3), z, — 0 as n — oo. That is, ¢ can be taken by f infinitely many times on any
punctured neighborhood of 0.

Tn =
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16 Isolation of Points in Preimage

Definition 16.1. Let f be defined on an open connected set ). The image of a set X C
under f is defined by

f(X)={weC:w= f(2) for some z € X}.
The preimage of a set Y C f(Q) under [ is defined by

FUY)={z€C: f(2) =w for some w € Y} .
If Y = {c}, we may write f~1(Y) = f~1(c) for simplicity.

Proposition 16.2. If f is non-constant, analytic, and f(zo) = ¢ for some zy € 2, then there
1s € > 0 such that

B.(20) N fHc) = {20}

Proof. Near zy, f has the Taylor series

f(z) = f(z0) + Zan(z — )" =c+ Zan(z — 20)"

Since f is non-constant, there is a smallest N € N such that ay # 0. And we can rewrite above
representation as

f(z) =c+ Z an(z — 20)" = c+ (2 — 20)V g(2),

where

Since ay # 0, there is € > 0 such that

9(z) #0 on B(2),

which implies that

f(2) #c¢ on Bo(z0)\{z0}
]

Theorem 16.3. Suppose that [ is analytic on an open connected set Q. If f(z,) = 0, where
zn € ) is a sequence of distinct points with a limit point in §2, then f is identical to 0.

Proof. By taking a subsequence, still indexed by n, zy = lim,, ., z,. By the continuity of f,
f(20) = 0. Suppose that f is not identical to 0, by Proposition 16.2, there is € > 0 such that

Be(z0) N f71(0) = {20},

a contradiction. O
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Corollary 16.4. Suppose that f and g are analytic on an open connected set Q. If f(z,) =
g(zn), where z, € Q is a sequence of distinct points with a limit point in Q, then f is identical
to g.

Remark 16.5. If f and F are analytic on Q' and 2, respectively, where Q' C Q. If f(z) = F(z)
on §Y, then F is an analytic continuation of f. Corollary 16.4 guarantees that there can be only
one such analytic continuation. In particular, suppose that fi and fo are analytic on €y and
O, respectively, and fi = fo on Q1 N Qs # ¢. Then the function

' 2\
g(Z) _ fl(z) ZfZ € 1\ 2,
fa(2) if z € Q,
on 1 U Qs is an analytic continuation of both fi and fs.

Theorem 16.6 (reflection principle). Let €2 be an open connected set which is symmetric with
respect to the real axis. Q = QT UITUQ™, where Q1 is the upper half part, Q= is the lower half
part, and I = QNOR. If f is analytic on €1, then

f2)=f3), z€9Q, (16.1)
if and only if f is real-valued on I.
Proof. Suppose that (16.1) holds. For x € I, we have

fl@) = f@) = f(a),

which gives f(z) € R.
On the other hand, if f is real-valued on I, we can define

f(z) if z€ QT UI,
9(z)=9___
f(Z) if z€ Q™.

Then g is analytic on Q. For each 2y € Q~, we have Z; € QF, and hence

oo

9(z) =) au(z— )"

n=0

in a neighborhood of Zg in Q1. By the definition of g,
o) = Y ae = )
n=0
in a neighborhood of zy in 7. That is, g is analytic on €27. And for each o € I, we have
f(z) = i b (2 — )"
n=0

in a neighborhood of ¢, say Bs(xo). In addition, b,’s are all real since f takes real values on
I. Hence,

g(z) = an(z — z9)"  on Bs(ze) N (QTUI).
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Moreover, for z € Bs(xg) N2,

9(x) = 3 ba(z —T0)" = 3 bu(z — 0"

We conclude that
g(z) = an(z —x9)" on Bs(xg).
n=0

Therefore g is also analytic on I, and hence analytic on €. Since f = g on Q, by Corollary
16.4, f is identical to g on . That is, (16.1) holds. O

17 Residue Theorem

Definition 17.1. If f is analytic and has the Laurent series

0

f(z) = Z cn(z — 20)"

n=—oo

on a punctured neighborhood B, (20)\{20}, 0 > 0. Then the coefficient c_y is called the residue
of f at zy, denoted by

Res(f;20) = c_1.

Proposition 17.2. Let v be the circle centered at zy with radius R and counterclockwise ori-

entation. If f is analytic on Br(z0)\{z20}, 20 € Q, then
/f(z)dz = 2mi Res(f; 2o).
8!
Proof. Recall that the coefficient of Laurent series

1
c_1 = Q—M/vf(z)dz

Equivalently,
/f(z)dz =2mic_1 = 2mi Res(f; z0).
”

]

Corollary 17.3 (residue theorem). Let Q2 be the open set enclosed by a simple closed curve
v with counterclockwise orientation. If f is analytic on Q\{z,...,z2x} for N distinct points
21y .., 2N € €1, then

N
/f(z)dz = 2m'z Res(f; zx).
v k=1
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Proof. By choosing 6 > 0 sufficiently small, we have Bs(z;), k = 1,..., N, are contained in
and mutually disjoint. Let -, be the boundary of Bs(z;) with counterclockwise orientation.
Then

/f(z)dz = Z f(z)dz = 27riz Res(f; 2
v k=1 """k k=1

Example 17.4.
(i) If f is analytic at zy, then Res(f;z0) = 0.

(i) Suppose that f has a pole of order less than or equal to m at zy for some m € N. The
function

9(2) = (z = 20)" f(2)

has a removable singularity at zy. We can extend the domain of g to include zy and have
the Taylor series about z,

> (n)
- Za’n(z - ZO)na Qp = J (ZO>7
n=0

n!

in a neighborhood of zy. And hence, the Laurent series of f about zy is

o o

k
E an(z — 29)" ™ = E aprm(z — 20)
n=0 k=—m

near zy. The residue of f at zy is

(mfl) Z
P
Example 17.5. Let f(z) = ¢ - Now we compute Res(f;0). Using the argument in Ezample
z
17.4,
_9(2) -
f(z) ==, whereg(z) =e"—1.
2z
Thus,
(3)
g0) 1
Res(f;0) = — -
es(£50) = T = 2

And by the residue theorem

/f(Z)dz = 2miRes(f;0) = %

v

for any simple closed curve v surrounding 0.
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1
= In order to evaluate the integral

2(z—2)°
/7 f(2)dz,

where v is the unit circle centered at 2 with counterclockwise orientation, we first compute
Res(f;2). Since

Example 17.6. Let f(z) =

f(z)= (zgﬁz;)f)’ where g(z) = %

Thus,

(2 1
g

By the residue theorem

/f(z)dz = 2mi Res(f;2) = kY
: 16
1
Example 17.7. Let f(z) = Fr In order to evaluate the integral

/7 f(2)dz,

where 7y 1s the circle centered at 2 with radius 5, counterclockuise oriented, we need to compute
Res(f;2) and Res(f;0). In Ezample 17.6, we showed

1
Res(f;2) = L
To compute Res(f;0), we have
_ h(2) B 1
f(z) = o where h(z) = B
Thus,
' h(0) 1
Res(f,O) == T = —E

By the residue theorem

/ f(2)dz = 2mi (Res(f; 0) + Res(f;2)) = 0.

o

1
Example 17.8. Let f(z) = T eoss’ Notice that
— oS 2

1l—cosz=1-—




Hence, f has a pole of order 2 at 0. Let

1 —cosz
By L’Hospital rule,
2 2

lim g(z) = lim — S lim = 2.

z2—0 2—0 8In z z—0 COS 2
The residue of f at 0 can be computed by

52
n 1 1 —cosz _
Res(f,())—il_r)r(l)—z_o 0.

Remark 17.9 (L'Hospital rule). If f and g are analytic at zo and f(z0) = g(z0) = 0, then

lim f(z) = lim f'(2)
SN gz) T g(e)

provided the limit on the right-hand side exists.

oS 2
Example 17.10. Let f(z) = cot z = ——. Singularities of f occur at z = nw, n € Z. For
sin z

1
each z =nm, n € Z, it is a simple pole, i.e., pole of order 1, of ——, and hence a simple pole
sin z
of f. Let

f(z) = 9(2) . where g(2) = m_
z—nm sin z
Then
Res(f;nm) = lim (= mr) oRE .
z—nm Sl 2
z—sinhz - .
Example 17.11. Let f(z) = amha Singularities of f occur at z = nmi, n € Z\{0}. At
22 sinh z

each z = nmi, n € Z\{0}, since
nmi — sinhnmi = nwi # 0

and

(+*sinh z)’ = 2nmisinh nri + (n7wi)? coshnri = (—1)"n?r? #£ 0,

Z=nT1

z = nmi 1s a simple pole of f. Let

(z — nrmi)(z — sinh z)

f(z) = ﬂ, where g(z) =

z — N7 22 sinh 2
Then
—1 n+1,
Res(f;nmi) = lim g(z) = w
Z—NTi nim
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18 Improper Integrals

Definition 18.1. For a continuous real-valued function f defined on [0,00) or R, the improper

integral of f is defined by
00 R
dr = i d
| s = pim [ sy

R—o0

and

[e’e) 0 R2

/ f(z)dz = lim f(z)dz + lim f(z)dx, (18.1)
— 00 R1~>oo 7R1 RQ‘)OO 0

respectively, provided the limits on the right-hand sides of the equalities exist. There is an-

other value assigned to the improper integral in (18.1), called the Cauchy principal value of the

integral, and defined by

P.V. /Z f(z)dz = lim /Zf(x)dx.

R—o00

/°° dx
o 18+1

firstly, we let vg, R > 1, be the closed curve consisting of C'r, the upper-half circle centered at
the origin with radius R, and lg, the line segment from —R to R. And we assume that g is
counterclockwise oriented. In the region enclosed by g, there are three zeros of x® + 1, that is,

Example 18.2. To evaluate the integral

c1 = €m0 ¢y = e/ =i and c3 = /5. By residue theorem,
3
dz _ ( 1 )
= 271 Res ick ).
/'m 26 4+1 kz:; 26 4+1
. . 1
For each k =1,2,3, ¢ is a simple pole of ———, and we have
2041
1 . 2 —Ck 1 Ck
R S = 1 = —— = ——,
es(zG+1’ck> S+l 66
Therefore,

/ dz _27T
7R26—|—1—3'
/ dz _/R dz
lRZ6+1_ _Rx6+1'

dz TR
< — 0 as R — oo.
cp 29+ 1] T RO -1

Notice that

And we have
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By passing to the limit R — oo,

Since 1 even, we have

6 +

/°° dv 7
o 25+1 37

Example 18.3. Now, we want to evaluate integrals of the form

/ f(z)sinazxdx or / f(z)cosaxdz, a > 0.

In view of Euler’s formula, it is equivalent to consider

/ Z f(x)e e da.

These integrals occur in the theory of Fourier analysis. Let vgr, Cr and lg be defined as in
Ezample 18.2. If z, ..., zx are all the singularities of f(2)e" in the region enclosed by yr for
R large. By residue theorem,

N
/ f(2)e"*dz = 2mi Z Res (f(2)e"™; z1,) -
TR k=1

Therefore, we have

N
/R f(x)edr = | f(2)e**dz = 2mi Z Res (f(2)€"; 21,) — f(2)e**dz. (18.2)
-R Ir

k=1 Cr

Example 18.4. To evaluate the integral

/  cos2zr J
———dx
o (224427
we follow the argument in Example 18.3 with

1
f(Z) = m and a = 2.
12z

Notice that 2i is the only singularity of
(18.2) becomes

1Ay in the region enclosed by vg for R large. Then

R 612:1: 6122 612z
_  dr=2miRes|—— %) - [ g
/_R (@2t = es((z2+4)2’ Z) /CR (2 +42"
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122
On one hand, 2¢ is a pole of order 2 of (274)2 By letting
z

12z 12z

e o g(2) e
(2142 (z—20)2 where g(z) = (z + 202’

we have

On the other hand,

612,2 R
———dz| < —0 R —
/CR (24227 | = (@ —ay e
Therefore, by passing to the limit R — oo,
* gl 5 5
P.V. —dr =27 - = .
/_ @2+ 42T T 3964 T 166

Taking the real parts on both sides above yields

* cos2x 5%
P.V. — —dr = —.
/Oo (22 + 4)2 T

/°° cos 2x p 5%
xr = :
o (22+4)2 32et
Lemma 18.5 (Jordan’s lemma). Let Cg be defined as in Example 18.2. Suppose that
(i) f is analytic on {z € C:Imz >0, |z| > Ry} for some Ry > 0;

(ii) For each R > Ry, there is a positive constant Mg such that
max | f| < Mg,
Cr
and

R—o00

Then, for every a > 0,

lim/ f(2)e"*dz = 0.
R—o0 Cr
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Proof. For a >0, R > Ry,
f(2)e"*dz = / f(Re™) B’ . iRe? df
Cr 0
_ ZR/ f (Reiﬁ) 6—aRsin96i(zR00596i9d6‘
0

Thus,

f(2)e"dz
Cr

T ) w/2 )
/ efaRsmede -9 / efaRsm Gde
0 0

20
By using the fact that sinf > — for 6 € [O, g},
T

S RMR/ e—aRsinedé)‘
0

Notice that

/7T/2 —aRsin Gde < /ﬂ/2 —QaRe/wde 7T (1 —aR) < 7L
e e =—(1-e¢ —.
0 —Jo 2aR ~ 2aR

Therefore,

(2)e"*dz
Cr

SRMR-%HO as R — oo.
a

Example 18.6. To evaluate the integral

/°° T sin 2x
> dzx,
o T*+3

we follow the argument in Example 18.3 with

z
f(Z) = m and a = 2.
122
Notice that \/3i is the only singularity of 73 enclosed by vg for R large. Then we have
z
R 2z 12z 12z
xe ze ze
dr =2miRes | ——=;V3i | — dz.
/Rx2+3x i es(22+3,\/_z) /CR22+SZ
Let
Zei2z g(Z) Zez'2z
= ,  where g(z) = ———,
2243 2—/3i 9(z) z+/3i
then

2243’ 202V3’

Res ( zei? \/32) =g <\/§z> _ !
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Moreover,

—0 as R — o0.

<
max|f] < g

By Jordan’s lemma,

122
. zel
lim 5 dz = 0.
R—o0 CR z + 3

Therefore,

gl o1 i
P.V./ x2+3dx:2m- N = ﬁ.

Taking the imaginary parts on both sides above yields

* xsin 2z T
P.V./ x2+3dx:e2\/§.

—00

rsin 22z
1S even,

Since 5
T+

/OoxsiDZ:U T
5 dr = )
o T2+3 2e2V3

Example 18.7. To evaluate the Dirichlet integral

-
sin
dx,
0

we let v, r, 0 < p < R, be the closed curve consisting of Cr, l_r—,, C, and l, r with counter-
clockwise orientation, where Cg is the upper-half circle centered at origin with radius R from
R to =R, C, is the upper-half circle centered at origin with radius p from —p to p, l_g_, is
the line segment from —R to —p, and l, r is the line segment from p to R. By Cauchy-Goursat

theorem,
eiz
/ —dz = 0.
R *

/ e—dz—l—/ 6—dz+ 6—dz+/ e—dz:().
Cr < l_R,—p < C, < lo,r z

The last equality can be further rewritten as

—p ix R iz iz iz
/ C dr +/ Cdr=— | “dr- / C . (18.3)
_R X p i Cy z Cr z

For the left-hand side of (18.3), we have

—p ix R iz R _:
/ € dr+ / € dr= 2@/ Y e, (18.4)
R X 0 X o X
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For the right-hand side of (18.3), first, —C,, can be parametrized by pe®, 6 € [0, 7], and hence

e Tewer N
—dz = —/ Cipedh = —i e’ db.
0 0

c, ? et

By using the fact that
le* = 1| < Clz| forall|z| <1

for some positive constant C', we have, for p <1,

[ (e =ayw|< [

pire? _ 1’ do < / Cpdf = Crp.
0

Thus,
s ) 0
lim e df =,
p—0 0
which gives
eiz
lim —dz = —mi.
p—0 C, z
Second, by Jordan’s lemma,
) eiz
lim —dz = 0.

By (18.4) and the last two equalities, (18.3) implies

o .

) sinx )

22/ dr = mi.
0

T

That 1s,

Example 18.8. For —1 < a < 3, to evaluate the integral

o xa
/0 (2% + 1)2d93,

f(z) =

we let

(2,’2 + 1)2’

where 2% = e®1°8% s defined by using the branch of logarithm

3
logz=1In|z| +i0, 0¢c€argz, 06(—%,%).
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In addition, we let v, r, Cr, Cp, l_r_, and l, r be defined as in Example 18.7 with 0 < p <
1 < R. Since i is the only singularity of f in the region enclosed by 7y, r, by residue theorem,

/ F(2)dz = 2mi Res (F(2):4). (18.5)
By letting
1) = 2 e o) = s
we have

(@ —2)2* + iaz*!
(z41)3

Res (f(2);1) = ¢'(1) =

z=1

We can divide the integral along v, r into four parts.

Za Za Za Za
dz = —d —d —d ——dz.
/wp,Rﬂz) ’ /c (22 +1)? Z+/zR,p (22 +1)2 Z+/cp (22 +1)2 Z+/zp,R (2+12"

First,
[t
— S az = ——— ax.
RCSE 211y
Second,
~a —p ea(ln|m|+i7r) ) R P
——dz = ———dx = " ——dx.
/ZR,,, (22 +1) /—R (% + 1) /p (% +1)?
Third,
z® z®
S P / S
/cp (22 +1) o, (2 +1)?
T alog(pew) '
= —/ e,—2 ~z'pe’9d9
0 (IO2€210 + 1)
T a(ln p+16) )
= —ip/ 6—2 .40
0 (p26219 + 1)
T ei(a-l—l)@
= —pot! / S —T
0 (p2€229 + 1)
Thus,
a a+1
z T
_F gl < ,
/cp (+12 7 (1—p?)
which implies
lim _Z _dx=0
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Finally,

a T alog(Re’g)
z e -
T dr= — LiReMdl
/cR 212" /0 (R2e2 4 17

™ ea(ln R+10) )
=R / S
0 (R2627,9 + 1)

™ 6i(a+1)9
= iR / S ]
0 (R2€2z9 + 1)

Thus,
/ z° gs| < TRt
on (24127 T (R2—1)?
which implies
lim [ ————dz=0.

By passing to the limit p — 0 and R — oo, (18.5) becomes

: > g : a—1 (1 — a)eo™/?
1 iam dr = 27i - i iam/2 .
( +e ) /0 —(1’2 1) T T - 1€ (—4 ) 5

Therefore, if a # 1,
/°° x® m(1—a)e™/? (1l —a) (1 —a)
o (

x? 4+ 1)2 T (1 + eiam) 2 (e—iam/2 4 giam/2) - 4cos(am/2)

For a = 1, by change of variables y = 2> + 1,

o0 xa o0 .:C
— " de= ———d
/o @+ 12" / @+ 12"

R R%41
x 1 dy 1 1 1
= i S e | =" lim (1- =z
Ao Jo 2412 T 2RSS, 2R%o< R2+1) 2

Example 18.9. For 0 < a < 1, to evaluate the integral

oo x—a
d
/0 s 1

we let
z—a
f(z) = e
where 2~ = e~*18% s defined by using the branch of logarithm

logz=1In|z|+i0, Ocargz, 6¢€(0,2m).

T
Moreover, for0 < p <1< R and 0 < a < 5 We define v, ra to be the simple closed curve

consisting of
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(i) Cr, the arc on the circle 9Br(0) from Re' to Re™™ counterclockwise,

(ii) 1_, the line segment from Re™"* to pe™**,

iii) C,, the arc on the circle 9B,(0) from pe™™ to pe'® clockwise, and
p p P P

(iv) 1y, the line segment from pe'® to Re™.

Since —1 is the only singularity of f in the region enclosed by v, r«, by residue theorem,

/ f(2)dz =2miRes (f(2); —1). (18.6)

Let

then we have

Res (f(2)i—1) = g(=1) = (-1) " = e7"".

Divide the integral along 7, ro into four parts

2z ¢ z 4 z ¢ 2z
z)dz = dz—i—/ dz—i—/ dz—i—/ dz.
/%,Rvaf() /CRz—i—l L 2+1 c, 2 +1 2+l

First,
—a 2T — Reia —a )
/ L _da= / % iR df
cp # 1 o Re? +1
2r—a ,—a(In R+10)
e .
=iR ————¢"dh
' /a Ref 11 °
. 2T —a ei(l—a)@
=ik ———df
! /a Re?? + 1
Second,

/ z7¢ dz = /R ((R + p— T>6_ia)_a . (—eiio‘)dr
o _ —ia
L 2+1 , (R+p—r)eric+1
] R e—a(ln(R—f—p—r)-{—i(?ﬂ—a))
_ _eza/
P

. d
(Rtp—rjea+1"

_ _i2ar—i(1-a)a /R (R+p—r)" dr
, (R+p—r)eia+1

. . R r—ae
_e—z2a7r—z(1—a)o¢ : dr.
p, re e+ 1

72



Third,

a e (pei(%_e))ia - i(2m—0)
/Cijlez:/a m'(—zpe )d&

. 2r—a ,—a(ln p+i(2m—0)) _ig
= —@P/a pei?m=0) 1 1 e db

. 2m—o ei(a—l)@—iQaTr
= —Zp /a md@

Finally,

a R i\ —a
/%dz:/ %f”‘dr
L (22 +1) , refr+1

‘ R efa(lnrJria)
= e ——dr
p  Tre+ 1

R —a
= ei(l_“)a/ r dr.
p e+ 1

By passing to the limit o« — 0, (18.6) implies

(1 77;2(]/71') /R ra dr 4 -lea /27r ei(lfa)G " Cw /271' ei(a71)07i2a7r & o Cian
— € T ] —_ —1 — = 4Tie .
, T+1 o Re?+1 P o pei@m=0) 41

Since

Rl 7 ei(l_a)e de Rl 2 0 R
) —a [ < —a, — —
7 A 619 1 ‘ 1 as (0.¢}

and

. 27 e'(afl)Gf'iZaﬂ' 50 L o' 0 0
p ¢ — <p°. — —
tp /Ov p62(27r—9) +1 ‘ =P 1—0p as p ’

by passing to the limits p — 0 and R — oo, we have

(1—e ") / ;:1 dr = 2mie "™,
0

That 1s,

< e d 271 0
r=— — = .
o r+1 eum — e~am™  sinam

19 Definite Integrals

Example 19.1. Residue theorem can be used to evaluate definite integrals of the form

2m
/ F (sin#, cos ) db.
0
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. 1 .
Let z2(0) = €, 0 € [0,27], then —— = e~ . Thus,

z(0)
1 1

o e 20)— —= w0 o 20)+ =
sinf = ,6 = Z( ) and cosf = ¢ te = 29) ,

21 21 2 2

and hence,
1 1
21 21 Z(e) - Z(Q) + —=
/ F (sin 0, cos 0) df = / F 2(0) 20) | 4o,
0 0 21 2

Since 2'(0) = ie?® = iz(0), by letting v be the unit circle centered at the origin with counter-
clockwise orientation, we further have

2 1 -1\ 1
/ F(Sin@,COSQ)dQ-/F(Z il ,Z+Z ),—dz.
0 . 21 2 1z

Example 19.2. To evaluate

2

" do

/ —, —1l<a<l,
o l+asind

we have, for a # 0,

T dh 1 1 2/a
— = — o dz = SRy dz,
o l+asin® s A4alz—271)/20 iz , 22+ 2iz/a—1

where v is the unit circle centered at the origin with counterclockwise orientation. The polyno-
mial 22 + 2iz/a + 1 has pure imaginary roots

(—1—!—\/1—(12)‘ (—1—\/1—a2>,
n=|—"-——])i and z=|—-—7-—]1

a a
Thus,
2/a 2/a
f(z) == = —.
224+ 2izfa—1 (z2—2z1)(z — 29)
Since |a| < 1,
Vi
a

Moreover, since |z1||z2| = 1, we have
|Zl‘ < 1.

Hence, the only singularity of f in the region enclosed by ~y is z1. Let

flz) = %, where g(z) = 22_/2 :
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Then

By residue theorem,

/% df / 2/a | o
—_— = 5 - dz = 2mi - - = :
o l+asind 4 22+ 2iz/a—1 iv1—a? 1-—a?
As for the case a =0,

2m 2m

/ L:/ 10 = 27

o l+asind 0

or a .

Example 19.3. To evaluate

/7r cos 20d60 l<a<l
— a
o 1—2acosf+ a?’ ’

We conclude that

we have

T cos 20d0 1 2m cos 20d6
/0 1—2@0050—1—(12_5/0 1 —2acosf + a?
1 [*" (2cos?0 —1)df
_5/0 1 —2acosf + a?

1 N9 _1 1
/ (z4+257/ 1.
.,

T2 ) 1—alz+zY)+a? iz

z/ 2 +1
= - de,
4 ), (z—a)(az — 1)z

where v is the unit circle centered at the origin with counterclockwise orientation. If a # 0, let

B 2441
(z) = (z —a)(az — 1)2%’

then singularities of f that lie in the region enclosed by v are O and a. For the residue of [ at
0, we let

_g(2) _ 21
f(Z)_77 where g(Z)— (Z—a)(az—l)’
then
2
Res (:0) = ¢/(0) =



For the residue of f at a, we let

h(z) 241
f(z) = P where h(z) = @D
then
at+1

Res(f;a) = h(a) = @-Da

By residue theorem,
/’T cos 26d6 1 / 21 p
= - z
o 1—2acost+a> 4/, (z—a)(az— 1)z

o a2+1+ a*+1 _ ma?
2 a? (a2—1)a2) 1—a®

As for the case a =0,

T cos 20d0 T
= 20d0 = 0.
/0 1 —2acosf + a? /0 o8

/ g cos 20d0 Ta?
0

That 1is,

= —1l<a<l.
1—2acosf@+a?2 1—a2 for “

20 Argument Principle

Definition 20.1. A function f is meromorphic in an open connected set ) if f is analytic
throughout €1 except for poles.

Definition 20.2. Given a curve vy from z; to zo parametrized by z(t),t € [a,b], if f is analytic
and has no zero on vy, we define A, arg f(z) to be the continuous change in arg f(z) along v
from zy to zo. That is,

A, arg (=) = 6(b) — 0(a),
provided that
F(z(t) = p(t)e®V t € [a,b], (20.1)
where p and 0 are continuous on [a,b].
Remark 20.3.

(i) p(t) = |f(2(t))] can be uniquely determined. As for 6(t), we only have 6(t) € arg f(z(t))
for each t € [a,b].

(i) If 0 and 0 are both continuous and satisfy (20.1), then we can show that 0(t) = Q(t) +2km
for some k € Z. Thus, the definition of A, arg f(2) is independent of the choice of 6.
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(iii) If there is o € R such that f(v) N {re® :r > 0} = ¢, then we can use
0(t) = 0a(t),
where
0,(t) € arg f(2(t)) N (a, a + 2m),
in (20.1).

(iv) Suppose that no such « in (iii) exists. For each t € [a,b], we can find an open interval
I; containing t such that the assumption in (iii) holds if we replace v by f (2(I; N [a,b])).
Since |a,b] is compact, we can find finitely many tq, ta, ..., ty € |a,b], such that [a,b] C
Uj-vzllj, where I; = I;,. Without loss of generality, we assume that

acly, bely, andthereis s;€l;jNIliF#¢ forallj=1,....,N—1.
On each I; N [a,b], j =1,...,N, there is a continuous function 0; such that
0;(t) € arg f(=(t)) for allt € I; N Ja,b].

We let ©; = 60, on I, N [a,b]. Inductively, for ©;, j = 1,..,N — 1, already defined, we
choose kji1 € Z such that 0j41(s;) + 2kjpm = ©,(s;) and let

Ojt1(t) = 0j41(t) + 2k for allt € 141 N a,b].
Therefore, we can let
6(t) =0©,(t) iftel;jn]a,bl,
which is a continuous function satisfying (20.1).

Remark 20.4. Suppose that v is a simple closed curve with counterclockwise orientation. f is
meromorphic and has no zero and no pole on y. Then A, arg f(z) is independent of the choice
of the starting point of v. Moreover, it is an integral multiple of 2. The integer

1
%A,Y arg f(2)

represents the number of the times that the image of v under f winds around the origin. It is
positive if the image winds around the origin in counterclockwise direction, and it is negative
if the image winds around the origin in clockwise direction. Moreover, if the image f () does
not enclose the origin, then

A arg f(z) = 0.

Theorem 20.5 (argument principle). Suppose that f is meromorphic on an open connected
set Q). Let v be a simple closed curve with counterclockwise orientation in 2. If f has no pole
and no zero on vy, then

1 _ 1 f'z), .,
s f) = o [ G =z P

where Z is the number of zeros of f inside v, and P is the number of poles of f inside v, both
counting multiplicities.
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Proof. Let ~ be parametrized by z(t), t € [a,b]. We have

S / ycon

Notice that

for p and 6 smooth. We have

f'(z(t)2'(t) = %f(z(t)) — %p@)ew(t) = p(£)e?D 1 ip(t)e? O (2).
Therefore,
f'(2) B b o ’
a1 Y [ oo
lnp(b> Inp(a) +i (6(b) — 6(a)) = iA, arg f(2). (20.2)

On the other hand, in the region enclosed by 7, suppose f has zeros Z; of order m;, j =1, ..., M,
and poles Py, of order ny, k =1,...,N. Then near each Z;, j = 1,..., M,

f(2) = (2= Z;)™g;(2)
for some g; analytic at Z; with g;(Z;) # 0. Hence, near Z;,

Fe) _mile = )0 G- 2GR my ()

fz) (z = Z;)™g;(2) 2= Zy gi(z)
That is, f'/f has a simple pole with residue m; at Z;, j = 1,..., M. Near each Py, k =1,..., N,
hi(z
f(z) = (z _k;k))nk
for some hy, analytic at P, with hg(Py) # 0. Hence, near Py,
f(2) =iz = B) ™ the(z) + (2 = P) ™ hi(z) oy hi(2)
f(z) (2 = Pe) " hi(2) 2= P hi(2)

That is, f'/f has a simple pole with residue —ny, at Py, k = 1,..., N. By residue theorem,

/ J}/g)) dz = 27i (Z mj — an) =2mi (Z — P). (20.3)

Combining (20.2) and (20.3), we complete the proof. O
Example 20.6. Let

242 2
f(z) = =22+ =,

z z

f has a simple pole at 0, and all zeros of f are outside the unit disc centered at the origin. Let
v be the unit circle centered at the origin with counterclockwise orientation. Then the argument

principle tells us that
1
%Afy arg f(Z) =0-—-1=-1.

That is, the image of v under f winds around the origin once in the clockwise direction.
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Example 20.7. In this example, we determine the number of roots of the equation P(z) =
24+ 823 + 322+ 22 + 2 = 0 on the right-half plane {z € C : Rez > 0}. For R > 0, let g be
the closed curve consisting the line segment lg from iR to —iR and the arc Cg on 0Br(0) from
—1R to 1R counterclockuise. For any pure imaginary number ci, ¢ € R,

P(ci) = (ci)* +8(ci)® + 3(ci)® + 2(ci) + 2 = ¢* = 3¢® + 2+ (—8¢° + 2¢) i.

Since ¢* — 3¢ + 2 and —8c3 + 2¢ have no common zero, the equation P(z) =0 has no root on
the imaginary axis. Also, by the fundamental theorem of algebra, the equation has exact four
roots. Thus, P(z) has no zero on Cg provided R sufficiently large. Since P is analytic, by the
argument principle,

1 P'(2)

2mi [, P(2)

dz

equals to the number of zeros of P(z) in the right-half plane provided R large. First, as in
(20.2)

P(z) =1 ar z
/lR P(z)dz_ Ay, arg f(2).

Notice that Im P(ci) = 0 at ¢ = —1/2, 0, or 1/2. At these points, P(z) takes values 21/16,
2, and 21/16, respectively. Thus, the image of lp under P does not intersect the half line
{r € R:2 <0}. As a consequence, for R sufficiently large,

Ay, arg f(2) = Arg (R' — 3R>+ 2+ (8R® — 2R) i) — Arg (R* — 3R* + 2 — (8R® — 2R) i)

B R* —3R? 42 R* —3R? 42

—0 as R— 0.
That 1is,

P
A8 P!

2 =0. (20.4)
Second,

iRedp.

/ Pz, /”/2 AR%™ 4 24R%¢™ 4 6Re” 42
crn P(2) _njo R0 + 8R3e0 + 3R%e0 4 2 Ret? + 2
Since the integrand in the last integral
4R3eB0 + 24R%™0 + 6Re' + 2 ‘
R4et40 + S R3e130 + 3 R2e120 + 2 Ret0 +2
uniformly in 6 € [—7/2,7/2]. We have

iRe” — 41 as R — oo,

/
lim P(z)
R0 Jop P(2)

Combining (20.4) and (20.5), we obtain

dz = 4mi. (20.5)

Pl
lim (2)

R—o00 R P(Z)

dz = 4mi.

Therefore, there are two roots of P(z) = 0 on the right-half plane.
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21 Rouché’s Theorem

Theorem 21.1 (Rouché’s theorem). Let v be a simple closed curve. Suppose that f and g are
analytic on the closure of the region enclosed by v and |f(2)| > |g(2)| for all z € . Then f(2)
and f(2) + g(2) have the same numbers of zeros, counting multiplicities, in the region enclosed

by .

Proof. Without loss of generality, we assume that ~ is counterclockwise oriented. Notice that
1f(2)] > |g(2)] > 0and |f(2) +g(2)| > |f(2)| = |g()| > 0 on . By the argument principle, it
suffices to show that

%AW arg f(z) = %A'y arg (f(z) +g(2))-

Moreover, we have,

() +9(z) = [(2) (1 + ?8) for = € .
Therefore,
Aarg (1) +.9(:) = A, arg [ 1) (14 93]
= A, arg f(z) + A, arg (1 + %) : (21.1)
Since
TR
(453 fe] <t ey
the image of v under 1 + % is contained in Bi(1). Hence, it does not enclose the origin. As
a consequence, :
A, arg (1 + %) = 0. (21.2)
Combining (21.1) and (21.2), we complete the proof. O

Example 21.2. In order to determine the number of roots, counting multiplicities, of the
equation

2 4+32°4+6=0
inside the circle 0By (0), we let
f(2) =32 and g(z) =2*+6.
We have, on 0B5(0),
1f(2)] =24 and |g(z)] <16 +6 = 22.

By Rouché’s theorem, f and f+g have the same numbers of roots, counting multiplicities, inside
the circle. Since f has three roots, counting multiplicities, inside the circle, so does f+ g. That
18, the equation

#4322 4+6=0

has three roots, counting multiplicities, inside the circle.
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Example 21.3. We can use Rouché’s theorem to prove the fundamental theorem of algebra.
Given a polynomial

P(z) =ag+ a1z + a2+ ... +a,2", a, #0, neN,
we want to show that P has n roots, counting multiplicities. Let
f(2) =a,2" and g(2) =ap+ a1z +as2® + ...+ ap, 12"t
For R > 0 sufficiently large, we have

[f () > 1g(2)|  for z € OBR(0).

By Rouché’s theorem, both f and f+ g have n zeros, counting multiplicities, in Br(0). Hence,
we conclude that P(z) = f(z) + g(z) has n zeros, counting multiplicities, in C.

22 Mappings by Elementary Functions

Linear Transformation. A general non-constant linear transformation is defined by
w=az+b
for some a,b € C, a#0. Let a = rye’®. Recalling that, in Ezample 4.8, we have
(i) The mapping w = z + b is a translation;
(ii) The mapping w = €%z is a rotation;
(iii) The mapping w = ryz is a scaling.

Therefore, the mapping w = az + b can be regarded as a rotation and a scaling, followed by a
translation. Moreover, it is one-to-one from C onto C.

Example 22.1. We consider the mapping
w=(1+14)z+ 2.
Since
1+i=2e"1,

this mapping is the rotation counterclockwise with angle 7/4 and expansion by factor /2, fol-
lowed by a translation z — z + 2. Thus, it transforms the rectangle region with vertices 0, 1,
1+ 2i and 2¢ into another rectangle region with vertices 2, 3+ 1, 1 + 3i and 2.

Mapping by 1/z. We consider the mapping

w= -,
z

which establishes a one-to-one correspondence between C\{0} and C\{0}. We have
z
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Hence,

1 -
lw| = B and argw = arg?z.
Also, we have
_ 1 _
[w| = B and argW = arg z.

Therefore, it maps points interior to the unit circle to the exterior radially and vice versa, and
maps points on the unit circle to itself. And then it is followed by a reflection with respect to
the real axis.

In the following, we show that the mapping w = 1/z transforms circles and lines into circles
and lines. If

w:u—i-vz':l: L -,
A A T
then
= #g/? = & and v = _%jty? = —&. (22.1)
Conversely, if
z:a:+yz':l: L -
w  utv
then
x = ﬁ and y = —ﬁ.
For a given circle, it can be described by the equation
(x = 20)” + (y — 90)* = R?
with R > 0. And for a given line, it can be described by the equation
ar +by =c
with a and b are not both zero. Now, we consider the equation
A(z® +y*) + Bz +Cy+ D =0, (22.2)

where A, B, C and D are real numbers with B* + C? > 4AD. Such an equation represents an
arbitrary circle or line. When A # 0, (22.2) can be rewritten as

B 2+ + & ?_(VB?+C—44D\’
Y94 YT54) ~ 2A '

When A =0, (22.2) becomes

Bx+Cy+ D=0
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with B*+ C? > 0, that is, B and C are not both zero. Putting (22.1) into (22.2) gives
A (v +0*) |2|* + Bulz|* = Cvlz|* + D = 0.
Then, using the relation,
(w? +v")(@® + ) = Jwl*|2* = 1,
we conclude that u and v satisfy
D (u*+v*) + Bu—Cv+A=0.
To summarize, under the mapping w = 1/z,

(i) a circle (A # 0) not passing through the origin (D # 0) is mapped onto a circle not
passing through the origin,

(ii) points on a circle (A # 0) through the origin (D = 0) are mapped onto a line not passing
through the origin;

(iii) a line (A = 0) not passing through the origin (D # 0) is mapped onto a circle through the
origin except for the origin,

(iv) points on a line (A = 0) through the origin (D = 0) are mapped onto a line through the
origin except for the origin.

Remark 22.2. By introducing the extended complex numbers C = CU {0}, the mapping
w = 1/z 1s one-to-one from C onto C. w maps 0 and co to oo and 0, respectively.

Example 22.3. According to the above derivation, a wvertical line x = ¢y with ¢y # 0 is
transformed by the mapping w = 1/z onto the circle

—c1 (u2 —1—1)2) +u =0,

1\2 g 1\2
U— — vV = —
201 261 ’

except for the origin. A horizontal line y = co with co # 0 is transformed by the mapping
w = 1/z onto the circle

or

or

except for the origin.
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Example 22.4. Under the mapping w = 1/z, we show that the half plane {z : Rez > ¢} with
c1 > 0 is mapped onto the disc {w : |w — 1/2¢;| < 1/2¢,}. For any ¢ > ¢, by Example 22.3,
the line {z : Rez = ¢} is mapped onto {w # 0 : |w — 1/2¢c| = 1/2¢c}. Since

{z:Rez>c} = U{Z:Rez:c}

c>cq

and

1 1
w|w = — = — 7,
261 2c

we conclude that half plane {z : Rez > ¢} is mapped onto the disc {w : |w —1/2¢1| < 1/2¢1}.

)Yl

c>cq

Linear Fractional Transformation. A transformation

_@z—i—b

- 22.3
v cz+d’ ( )

where a, b, ¢ and d are complex numbers with ad — bc # 0, is called a linear fractional trans-
formation or Mobius transformation. Since above definition can be written as

cwz +dw —az —b=0, (22.4)

it is also called a bilinear transformation.
If ¢ =0, the mapping (22.3) reduces to a linear transformation

a
w—EZ—i—C—l, a/d#o

If ¢ #£0, (22.3) can be rewritten as

a be—ad 1
w:——.|— . .
c c cz+d

It can be regarded as a composition of mappings

1 bc — ad
Z=cz+d, W=—, and w=242X"1
Z c c

W.

Such a mapping is one-to-one from C\{—d/c} onto C\{a/c}. Moreover, it transforms circles
and lines into circles and lines.

b
Remark 22.5. The mapping w = L ,
cz+d

—d/c and oo to oo and a/c, respectively.

ad — be # 0, is one-to-one from C onto C. w maps

Proposition 22.6. Given three distinct points zy, zo, z3 and three distinct points wq, ws, ws,
there is a unique linear fractional transformation that maps zj to wg, k = 1,2, 3.

Proof. Notice that a linear fractional transformation of the form (22.3) can be determined
implicitly by (22.4). By putting (zx, wy) into (22.4), k = 1,2,3, we obtain three equations of
four unknowns a, b, ¢ and d. Thus, the ratios of the coefficients a, b, ¢ and d can be uniquely
determined. Consequently, the transformation is uniquely determined. O
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Example 22.7. Find the linear fractional transformation

_az—i—b
ez +4d

that maps points 2, i and —2 to 1, i and —1, respectively. Taking the values of w at z = 2 and
z = —2, we have
2a+b —2a+b

_ g =4t
2% +d me oo d

The above equalities imply that
b=2c and d=2a.

Thus,

az + 2c
cz+2a

Since 1 is mapped to i, above equality gives ¢ = ai/3. Therefore,

2a1
IR PR
%2—1—2& 12+ 6

3
Proposition 22.8. The equation

(w — wy)(wa — w3) _ (z = 21)(22 — 23)
(0 — w3)(wa — wy) (z = 23)(22 — 21)

(22.5)

defines implicitly a linear fractional transformation that maps distinct points zy, za, 23 to distinct
points wy, wy, ws, respectively.

Proof. (22.5) can be written as
(w —wy)(we —w3)(z — 23)(22 — 21) = (W — w3) (w2 — w1 )(z — 21) (22 — 23). (22.6)
Putting z = z; into (22.6), we have
(w —wy)(wg —ws3)(z1 — 23)(22 — 21) = 0.
It follows that w = w;. Putting z = 25 into (22.6), we have
(w —wi) (w2 — ws) = (w — w)(wz — wy)
It follows that w = wy. Putting z = z3 into (22.6), we have
0= (w—ws) (w2 —wi)(23 — 21)(22 — 23).

It follows that w = ws. Moreover, the mapping defined by (22.5) can be written in the form
(22.4), i.e

cwz +dw —az—b=0.

Since the mapping is not constant, the condition ad — be # 0 is satisfied. Hence, (22.5) defines
a linear fractional transformation mapping z1, 2z and z3 to wy, we and ws, respectively. O
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Example 22.9. By using Proposition 22.8, the linear fractional transformation that maps
points 2, 1 and —2 to 1, © and —1 we found in Example 22.7 can be obtained by solving the
equation

(w—1)(+1) (2—2)(i+2)
wri—1) (+2)i-2)

The above equation gives

_32+2i
246

Proposition 22.10. For a linear fractional transformation, the following two statements are
equivalents.

(i) It maps the upper half plane {z : Im z > 0} onto the disc {w : |w| < 1} and the boundary
of the half plane {z : Im z = 0} into the boundary of the disc {w : |w| = 1}.

(ii) It has the form

where a € R and zy € C with Im 2y > 0.
Remark 22.11. In fact, the mapping maps {z : Imz = 0} onto {w : |w| = 1}\{e"*}.
Proof. Assuming (i), we let

az+b
= ) 22.7
v cz+d ( )

Notice that the line {z : Im z = 0} is mapped to the circle {w : |w| = 1}. We have |w| = 1 if
z = 0, which implies

] = [d] # 0.

Consider a sequence z, on {z : Imz = 0} with |z,| — oo, similarly, we have

la] = |e| # 0.
We can rewrite (22.7) as
a z+b/a
=—- . 22.8
c z+d/c (228)

Since |a/c| =1 and |b/a| = |d/c| # 0, (22.8) can be written as

w = e (Z - ZO) (22.9)

zZ— 2

for some a € R and zp, z; € C with |z9| = |21] # 0. Now, putting z = 1 into (22.9), we have

1= 20 = |1 = =,
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which implies
l—z0—Z+ |2 =1—2=1-2=1—2 —2z + |u|*.

Since |z9| = |2z1|, we have

20+ %o = 21 + 21,
that is, Re zo = Re z;. It follows that

21 =2y Or 2z1=2.

If z;1 = 2y, then w becomes a constant. Therefore, z; = Z, and we conclude that

w = e (Z_ZO>.

Z— 2o

Since the mapping maps zp to the origin, zg must be in the upper half plane {z : Im z > 0},
that is, Im 2o > 0. Therefore, (ii) holds.

Conversely, assuming (ii), then the mapping is one-to-one from C\{z} onto C\{e*®}. More-
over, since

ul = 22220
|z — Zo|
we have
lw| <1 if Imz > 0;
lw|=1 if Imz = 0;
lw|>1 ifImz<0.
Then (i) follows. O
Example 22.12. The transformation
11—z
v 1+ 2

can be written as

i (z — z)
w=e - ).
z—1

Therefore, w maps the upper half plane {z : Im z > 0} onto the disc {w : |w| < 1} and the line
{z:Imz =0} onto {w # —1: |w| =1}.
Example 22.13. In this example, we will show that the transformation

z—1

z+1
maps the half plane {z : Imz > 0} onto the plane {w : Imw > 0} and points on the real azis
{z :Imz = 0}\{—1} onto {w : Imw = 0}\{1}. We know that w is one-to-one from C\{—1}
onto C\{1}. Notice that if z is real, w is real. Since the image of the line {z : Im z = 0} must
be on a line or a circle, it equals to {w : Imw = 0}\{1}. Moreover, by writing z = = + yi, we
have

r—14+y 2 +y? -1 2y

: + i.
c+l+yi (@+1)P+y*  (@+1)P2+¢°

That is, Imw has the same sign as Im z. Therefore, w maps {z : Im z > 0} onto {w : Imw > 0}.
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Example 22.14. Let

=1
w ng+1’

where the logarithm is the principal branch. w is one-to-one, and w is the composition of

-1
7=1= and w =log Z.
z+1

Since Z maps the half plane {z : Imz > 0} onto the half plane {Z : Im Z > 0}, the image
—1
of {z : Imz > 0} under w = logz 1 is in the strip {w : 0 < Imw < w}. Moreover,
z

for each 0 < 0y < m, the mapping w = logZ maps each ray {Z : |Z| > 0,ArgZ = 60y}
onto the line {w : Imw = 6y}. We conclude that w = log -

] maps {z : Imz > 0} onto
z

{w:0<Imw < 7}.

Mapping by e”. Consider the mapping by the exponential function

w=e.

w maps a vertical line {z : Rez = 1}, ¢1 € R, onto the circle {w : |w| = e“*}. Each points on
the circle is the image of infinitely many points. For a horizontal line {z : Imz = 3}, ¢o € R,
w maps it one-to-one and onto the ray {w : |w| > 0, co € argw}. Vertical and horizontal line
segments are mapped onto portions of circles and rays.

Example 22.15. Let w = €*. Then w maps the rectangular region
{z:a<Rez<b c<Imz<d}
onto the region
{w:w:pew,eagpgeb,cgﬁgd}.
An vertical line segment
{z:Rez=cj,c<Imz<d}, a<c <b,

18 mapped onto the arc

{w:w:ecleie,CSHSd}.
An horizontal line segment

{z:a<Rez<b Imz=cy}
1s mapped onto the line segment

{w:w:pew, eagpgeb,QZCQ}.

Moreover, if d — ¢ < 27, the mapping one-to-one on the rectangular region.
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Example 22.16. Let w = e*. Then w maps the strip
{z:0<Imz < 7}
one-to-one and onto the half space
{w: Imw > 0}.

Example 22.17. We consider the mapping

10
w—2 z > .

By letting z = pe® and w = u + vi, we have

1 1 1 1
u:—<p+—>0089 and v:—(p——>sin0.
2 p 2 p

For any positive p # 1, we have

u? v?

A = A
For 0 € (—m,m)\{—7/2,0,7/2}, we have

u? v?

=1.

1

cos2f  sin?6
Therefore,

(i) w maps a circle {z : |z| = po} for positive py # 1, onto an ellipse with foci £1 and length
of long axis po + py;

(i) w maps a ray {z : |z| > 1,Argz = 0y} for 6y ¢ {—n/2,0,7/2,7} onto half a branch of
hyperbola.

Example 22.18. Consider the mapping

1 +1
w=-[z+-].
2 z

As discussed in Example 22.17, the upper half circle {z : |z| = p, Im 2z > 0} for some 0 < p < 1,
18 mapped onto

u? v?

otp P/d o pipa S 0}’

the lower half part of an ellipse. The lower half circle {z : |z| = p, Im z < 0} for some 0 < p < 1,

18 mapped onto
u? v?
{w:u—i-m': 2 + v :1,v>0},
(b+p=)" /4 (p—p7') /4
the upper half part of an ellipse. As a consequence, w maps the upper half disc {z : |z| <

1, Imz > 0} onto the lower half plane {w : Imw < 0}, and w maps the lower half disc
{z:]2| <1, Imz < 0} onto the upper half plane {w : Imw > 0}.

{w=u+m’:
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Example 22.19. Consider the mapping

) ei? — g%
w=snz=———,
21

which can be regarded as a composition of

: 1 1
Z=e" W=1iZ d =——\W+=].
e”, 14, and w 2( —l—W)

The half strip
{z:—g<Rez<g,Imz>O}
is mapped by Z = e* onto the half disc
{Z:pei9:0<p<1, —z<6’<z}.
2 2
The above half disc is mapped by W = iZ onto the half disc

{(W=pe”:0<p<1,0<0<7}.

2
{w:Im > 0}.

1 1
Finally, the above is mapped by w = —= (W + W) onto the half plane

That is, the half strip
{z:—g<Rez<g,Imz>O}

is mapped by w = sin z onto the half plane {w : Tm > 0}.

23 Conformal Mappings

Definition 23.1. Let f be analytic at zy. f is conformal at zy if there are 6y € R and py > 0
such that for any smooth curve v through zy, f maps the tangent vector of v at zy by rotating
it by 0y and then scaling it by po. That is, for any v through zy, parametrized by z(t), where

z(to) = 20, we have

(f 02)'(to) = poe™™2'(to).

If f is conformal at each points on a region €2, then the mapping by f is called a conformal

mapping on §2.

Proposition 23.2. If f is analytic on a region Q and f'(z9) # 0 for some zy € Q, then f is

conformal at zg.

Proof. By writing f’(z9) = poe’®® for some thetay € R and py > 0, then for any curve v through

20, parametrized by z(t), where z(ty) = zp, we have

(f 0 2)/(to) = ['(2(t0))# (o) = f'(20)#'(to) = poe'™2'(to).

Example 23.3. The mapping w = e* is conformal on the whole complex plane C.
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