
1 Complex Numbers and Some Basic Algebraic Manip-

ulations

Definition 1.1. By introducing the pure imaginary number i satisfying i2 = −1, the set of
complex numbers C is defined by

C = {x+ yi : x, y ∈ R} ,

where R is the set of real numbers.

Definition 1.2. For a complex number z = x+yi, x, y ∈ R, x and y are the real and imaginary
parts of z. We denote

Re z = x and Im z = y.

If Im z = 0, then z is a real number. If Re z = 0, z is called a pure imaginary number. Two
complex numbers z1 and z2 are equal if

Re z1 = Re z2 and Im z1 = Im z2.

Remark 1.3. For a, b ∈ R, one of the following three relations holds: (i) a < b; (ii) a = b;
(iii) a > b. But for complex numbers z1 and z2, we do not have z1 > z2 or z1 < z2.

Definition 1.4 (Addition). For z1 = x1 + y1i and z2 = x2 + y2i, x1, x2, y1, y2 ∈ R, we define
the sum z1 + z2 to be

z1 + z2 = (x1 + x2) + (y1 + y2)i.

Property 1.5.

(i) (Commutative law) z1 + z2 = z2 + z1 for all z1, z2 ∈ C.

(ii) (Associative law) z1 + (z2 + z3) = (z1 + z2) + z3 for all z1, z2, z3 ∈ C.

(iii) (Summation identity) There is 0 ∈ C such that z + 0 = z for all z ∈ C.

(iv) (Summation inverse) For all z ∈ C, there is −z ∈ C such that z + (−z) = 0.

Remark 1.6.

(i) 0 = 0 + 0i.

(ii) For z = x+ yi, x, y ∈ R, −z = (−x) + (−y)i.

Definition 1.7 (Subtraction). For z1, z2 ∈ C, we define the subtraction z1 − z2 to be

z1 − z2 = z1 + (−z2).

Formal Calculation. Assuming that the commutative law, associative law and the distributive
law hold for complex numbers, for x1, x2, y1, y2 ∈ R,

(x1 + y1i)(x2 + y2i) = x1x2 + x1y2i+ x2y1i+ y1y2i
2

= x1x2 + x1y2i+ x2y1i− y1y2

= (x1x2 − y1y2) + (x1y2 + x2y1)i.
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Definition 1.8 (Multiplication). For z1 = x1 + y1i and z2 = x2 + y2i, x1, x2, y1, y2 ∈ R, we
define the product z1z2 to be

z1z2 = (x1x2 − y1y2) + (x1y2 + x2y1)i.

Property 1.9.

(i) (Commutative law) z1z2 = z2z1 for all z1, z2 ∈ C.

(ii) (Associative law) z1(z2z3) = (z1z2)z3 for all z1, z2, z3 ∈ C.

(iii) (Distributive law) z1(z2 + z3) = z1z2 + z1z3 for all z1, z2, z3 ∈ C.

(iv) (Multiplication identity) There is 1 ∈ C such that z · 1 = z for all z ∈ C.

(v) (Multiplication inverse) For all z ∈ C\{0}, there is z−1 ∈ C such that zz−1 = 1.

Remark 1.10.

(i) If z1, z2 ∈ C, z1z2 = 0, then either z1 = 0 or z2 = 0, or possibly z1 = z2 = 0.

(ii) 1 = 1 + 0i.

(iii) For z = x+ yi, x, y ∈ R, z−1 =
x

x2 + y2
+
−y

x2 + y2
i.

(iv) Sometimes, we denote z−1 by
1

z
.

(v) For z ∈ C\{0}, n ∈ N, zn is defined inductively by{
zk = zk−1z for k ∈ N,
z0 = 1.

(vi) (Binomial formula) For z1, z2 ∈ C\{0}, n ∈ N,

(z1 + z2)n =
n∑
k=0

(
n
k

)
zk1z

n−k
2 ,

where (
n
k

)
=

n!

k!(n− k)!
.

Definition 1.11 (Division). For z1, z2 ∈ C, z2 6= 0, we define the division by

z1

z2

= z1z
−1
2 .

Remark 1.12. For z1, ..., z4 ∈ C, z3 6= 0, z4 6= 0,(
z1

z3

)(
z2

z4

)
=
z1z2

z3z4

.
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Example 1.13.

4 + i

2− 3i
=

(4 + i)(2 + 3i)

(2 + 3i)(2− 3i)
=

5 + 14i

13
=

5

13
+

14

13
i.

Definition 1.14 (Euler’s formula). For y ∈ R,

eyi = cos y + i sin y.

Formal Calculation. Recall that the exponential function for real numbers admits a Taylor
expansion. For x ∈ R,

ex =
∞∑
n=0

xn

n!
.

If the above expansion holds for complex numbers, particularly for pure imaginary numbers, we
have

eyi =
∞∑
n=0

ynin

n!
.

Since i4k = 1, i4k+1 = i, i4k+2 = −1, and i4k+3 = −i, for all k ∈ N ∪ {0}, we can divide the
above series into four parts as follows.

eyi =
∞∑
k=0

y4ki4k

(4k)!
+
∞∑
k=0

y4k+1i4k+1

(4k + 1)!
+
∞∑
k=0

y4k+2i4k+2

(4k + 2)!
+
∞∑
k=0

y4k+3i4k+3

(4k + 3)!

=
∞∑
k=0

y4k

(4k)!
+ i

∞∑
k=0

y4k+1

(4k + 1)!
−
∞∑
k=0

y4k+2

(4k + 2)!
− i

∞∑
k=0

y4k+3

(4k + 3)!
.

Combining the real parts and the imaginary parts together, it follows

eyi =

(
∞∑
k=0

y4k

(4k)!
−
∞∑
k=0

y4k+2

(4k + 2)!

)
+ i

(
∞∑
k=0

y4k+1

(4k + 1)!
−
∞∑
k=0

y4k+3

(4k + 3)!

)

=
∞∑
n=0

(−1)ny2n

(2n)!
+ i

∞∑
n=0

(−1)ny2n+1

(2n+ 1)!

= cos y + i sin y.

Definition 1.15. For z = x+ yi, x, y ∈ R,

ez = ex(cos y + i sin y).

Proposition 1.16. For z1, z2 ∈ C,

ez1+z2 = ez1ez2

Remark 1.17. For z ∈ C, the complex exponential function also has the Taylor expansion

ez =
∞∑
n=0

zn

n!
.
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2 Geometric Representation of Complex Number Field

A complex number z = x + yi, x, y ∈ R, can be identified as a point (x, y) in R2. We can
interpret the algebraic manipulations of complex numbers in the following geometric way.

Addition. Given z1, z2 ∈ C, we can construct a parallelogram with edges 0z1 and 0z2. Then
the fourth vertex, different from 0, z1 and z2, corresponds to z1 + z2.

Subtraction. z1 − z2 denotes the vector starting from z2 and ending at z1.

Polar Coordinates. For (x, y) ∈ R2, we have the polar coordinates

(x, y) = (ρ cos θ, ρ sin θ) ,

where ρ =
√
x2 + y2, θ ∈ R. The corresponding complex number z = x+ yi can be represented

as

z = x+ yi = ρ cos θ + iρ sin θ = ρ (cos θ + i sin θ) .

By using Euler’s formula, cos θ + i sin θ = eiθ, we obtain

z = ρeiθ.

Definition 2.1. For z = x + yi = ρeiθ ∈ C, ρ =
√
x2 + y2 is called the modulus of z, denoted

by |z|. That is, the modulus of z is

|z| =
√

(Re z)2 + (Im z)2.

And for z 6= 0, we call θ an argument of z and define arg z to be the set of all argument of z.

Example 2.2.

(i) | − 3 + 2i| =
√

13.

(ii) |1 + 4i| =
√

17.

Remark 2.3.

(i) Geometrically, |z| is the distance between (x, y) and the origin.

(ii) Re z ≤ |Re z| ≤ |z| and Im z ≤ |Im z| ≤ |z|.

(iii) For z1, z2 ∈ C, |z1z2| = |z1||z2|. And |z−1| = |z|−1 if z 6= 0.

(iv) |zn| = |z|n for z ∈ C, n ∈ N.

(v) For z = 0, θ is undefined.

(vi) For z 6= 0, θ is defined up to 2kπ, k ∈ Z. If we restrict θ to be a number in (−π, π],
then the argument for a complex number can be uniquely determined. That is, there is a
unique Θ ∈ (−π, π] such that Θ ∈ arg z. We call Θ the principal argument of z, denoted
by Arg z.
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(vii) For z 6= 0,

arg z = {Arg z + 2kπ : k ∈ Z} .

Example 2.4.

Arg(−1− i) = −3π

4
.

arg(−1− i) =

{
−3π

4
+ 2kπ : k ∈ Z

}
.

Proposition 2.5 (Triangle inequality). For z1, z2 ∈ C,

||z1| − |z2|| ≤ |z1 + z2| ≤ |z1|+ |z2|.

Proof. For the second inequality, we can construct a triangle with vertices 0, z1 and z1 + z2.
Then length of the edge between 0 and z1 + z2 if bounded by the sum of the length of the other
two. The inequality then follows. As for the first inequality, we can apply the inequality we
just proved to get

|z1| = |(z1 + z2) + (−z2)| ≤ |z1 + z2|+ | − z2| = |z1 + z2|+ |z2|.

That is,

|z1| − |z2| ≤ |z1 + z2|.

Interchanging the roles of z1 and z2, we obtain

|z2| − |z1| ≤ |z1 + z2|.

The last two inequalities complete the proof.

Proposition 2.6. For z1, ..., zn ∈ C,

|z1 + ...+ zn| ≤ |z1|+ ...+ |zn|.

Proof. By mathematical induction.

Example 2.7. We can use the triangle inequality to estimate 3 + z + z2 for all z with |z| = 2
as follows. By the triangle inequality,

|3 + z + z2| ≤ 3 + |z|+ |z2|.

Since |z2| = |z|2 and |z| = 2, the above estimate is reduced to

|3 + z + z2| ≤ 3 + |z|+ |z2| = 3 + |z|+ |z|2 = 9.

Multiplication. For two complex numbers z1 = ρ1e
iθ1 and z2 = ρ2e

iθ2, we have

z1z2 = ρ1ρ2e
i(θ1+θ2).

That is,

|z1z2| = ρ1ρ2

and

arg(z1z2) = {θ1 + θ2 + 2kπ : k ∈ Z}.
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Remark 2.8. When a complex number z1 = ρ1e
iθ1 is multiplied by another complex number

z2 = ρ2e
iθ2, we have the modulus of the product |z1z2| = ρ2|z1|. That is, it corresponds to stretch

or compress the vector z1. Since θ1 + θ2 is an argument of z1z2, the direction of z1z2 can be
obtained by rotating the direction of z1 counterclockwise by θ2 if θ2 > 0, or clockwise by −θ2 if
θ2 < 0.

Remark 2.9.

(i) arg(z1z2) = arg z1 + arg z2 in the sense of set addition. But in general, the equality

Arg(z1z2) = Arg z1 + Arg z2

is false.

(ii) For complex number z = ρeiθ, ρ > 0, z−1 = ρ−1e−iθ.

(iii) For z 6= 0, arg(z−1) = −arg z.

(iv) For z1, z2 ∈ C, z2 6= 0, arg

(
z1

z2

)
= arg z1 − arg z2.

(v) For complex number z = ρeiθ, ρ > 0, zn = ρneinθ for all n ∈ Z.

(vi) (de Moivre’s formula) By using (v) with ρ = 1, for n ∈ Z, we have(
eiθ
)n

= einθ.

That is,

(cos θ + i sin θ)n = cosnθ + i sinnθ. (2.1)

Example 2.10. If z1 = −1 and z2 = i, then

Arg z1 = π and Arg z2 =
π

2
.

However,

Arg(z1z2) = Arg(−i) = −π
2
6= 3π

2
= Arg z1 + Arg z2.

Example 2.11. In order to find the principal argument of z =
i

−1− i
, we start by writing

arg z = arg i− arg(−1− i).

Since

Arg i =
π

2
and Arg(−1− i) = −3π

4
,

we have that
5π

4
∈ arg z. Therefore,

Arg z = −3π

4
.
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Example 2.12. By (2.1) with n = 2, we have

(cos θ + i sin θ)2 = cos 2θ + i sin 2θ.

That is, (
cos2 θ − sin2 θ

)
+ i (2 sin θ cos θ) = cos 2θ + i sin 2θ.

Therefore,

cos 2θ = cos2 θ − sin2 θ, and sin 2θ = 2 sin θ cos θ.

3 Some Basic Geometric Objects Represented in Com-

plex Theory

Example 3.1 (Circles). A circle with center z0 and radius r0 is given by {z ∈ C : |z − z0| = r0}.

Example 3.2. The interior part of the circle given in Example 3.1 is the set {z ∈ C : |z − z0| < r0}.

Example 3.3. The exterior part of the circle given in Example 3.1 is the set {z ∈ C : |z − z0| > r0}.

Example 3.4 (Ellipses). An ellipse with foci z1 and z2 is given by {z ∈ C : |z − z1|+ |z − z2| = d}.
Here d is the length of the long axis.

Example 3.5 (Lines). Given two complex numbers z1 and z2, they determine a straight line L
such that L passes across z1 and z2. For all points on L, denoted by z, the direction from z1

to z2 and the direction from z1 to z are either the same or different by π. Therefore, by polar
coordinates, if z2 − z1 = ρeiθ, then it must hold

z − z1 = reiθ or z − z1 = rei(θ+π).

Here ρ and r are moduli of z2 − z1 and z − z1, respectively. Therefore, we have

either
z − z1

z2 − z1

=
r

ρ
or

z − z1

z2 − z1

= −r
ρ
.

In either case,
z − z1

z2 − z1

is real, provided that z lies on the line L. The converse is also true. So

in the complex theory, line L determined by z1 and z2 can be represented by

L =

{
z ∈ C : Im

(
z − z1

z2 − z1

)
= 0

}
. (3.1)

Example 3.6. Find all points which satisfy

Im

(
z + 1− 3i

4− i

)
= 0.

The condition given in this example is quite similar to (3.1). It is a particular case of (3.1)
when we have

−z1 = 1− 3i and z2 − z1 = 4− i.

That is, z1 = −1 + 3i and z2 = 3 + 2i. By the discussion in Example 3.5, the points in this
example represent a line passing across −1 + 3i and 3 + 2i.
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Example 3.7 (Another representation for circles). A circle can be uniquely determined by given
three points which are not on the same line. Suppose that C is the circle passing across z1, z2

and z3. For another point z on C, without loss of generality, we assume that z1, z2, z3 and z are
clockwise distributed. Other cases can be similarly considered. Then by fundamental geometry,
it holds

∠z1z3z2 = ∠z1zz2.

The reason is that these two angles correspond to the same arc on the circle C. Notice that
we can rotate the vector z3− z2 counterclockwise by the angle ∠z1z3z2, the resulted vector must
have the same direction as z3 − z1. Therefore, we have

z3 − z1 = λ1(z3 − z2)ei∠z1z3z2

for some λ1 > 0. Similarly, we have

z − z1 = λ2(z − z2)ei∠z1zz2

for some λ2 > 0. Here λ1 and λ2 are positive real numbers. Since ∠z1z3z2 = ∠z1zz2, the last
two equalities yield (

z − z1

z − z2

)/(z3 − z1

z3 − z2

)
=
λ2

λ1

.

This furthermore implies

Im

[(
z − z1

z − z2

)/(z3 − z1

z3 − z2

)]
= 0.

One can apply similar arguments above for the other possible positions of z on C. The last
equality always holds once z is on C. Therefore, we conclude that

C =

{
z ∈ C : Im

[(
z − z1

z − z2

)/(z3 − z1

z3 − z2

)]
= 0

}
. (3.2)

Example 3.8. Find all points which satisfy

Im

(
1

z

)
= 1.

Notice that

Im

(
1

z

)
= 1 = Im (i) .

Therefore,

0 = Im

(
1

z
− i
)

= Im

(
1− iz
z

)
= Im

(
z + i

z
· (−i)

)
.

Compare with (3.2), we have in this example

−z1 = i, z2 = 0, and
z3 − z1

z3 − z2

= −i.
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Equivalently, it holds z1 = −i, z2 = 0, z3 =
1

2
− i

2
. It represents a circle passing across these

three points. Analytically all points in this example satisfy∣∣∣∣z +
i

2

∣∣∣∣ =
1

2
.

Example 3.9 (Side of a line). Given different z1 and z2 in C, we can determine a line L. There
are two directions if a line is given. One direction is from z1 to z2, while another direction is
from z2 to z1. The concept of side is related to the direction that we are using. If we fix a
direction by starting from z1 to z2, then all points on the left form the left-hand side of the line
L, while all points on the right form the right-hand side of the line L. Pay attention that the
left-hand side and the right-hand side depend on the direction that we are using. Suppose that
the direction is given by starting from z1 to z2. Then, for an arbitrary point z on the left-hand
side, we can rotate z2 − z1 counterclockwise by an angle θ0 ∈ (0, π) to the direction given by
z − z1. In other words,

z − z1 = λ0(z2 − z1)eiθ0 ,

for some λ0 > 0 and θ0 ∈ (0, π). From the above equality, we have

Im

(
z − z1

z2 − z1

)
= λ0 sin θ0 > 0.

Similarly, if z is on the right-hand side of L with the direction given by pointing from z1 to z2,
then it holds

Im

(
z − z1

z2 − z1

)
= λ0 sin θ0 < 0.

The above arguments and (3.1) implies that given z1 and z2, all points satisfy (3.1) must lie on
the line across z1 and z2. If

Im

(
z − z1

z2 − z1

)
> 0,

then z lies on the left-hand side of L with the direction from z1 to z2. If

Im

(
z − z1

z2 − z1

)
< 0,

then z lies on the right-hand side of L.

Example 3.10. Find all points satisfying

Im

(
z + 1− 3i

4− i

)
> 0. (3.3)

By example 3.6, points satisfy

Im

(
z + 1− 3i

4− i

)
= 0

lie on the line L across z1 = −1 + 3i, z2 = 3 + 2i. By Example 3.9, z satisfying (3.3) must be
on the left-hand side of L with the direction from z1 to z2.
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Example 3.11 (Reflection in the real axis). In complex theory, given a complex number z =
x + yi, we have an operator to find its symmetric point with respect to the x-axis. In fact, the
symmetric point of (x, y) with respect to the x-axis is (x,−y). This symmetric point corresponds
to the number x − yi. In the future, we denote by z = x − yi the symmetric point of z with
respect to the x-axis.

Definition 3.12 (Complex conjugates). For z = x + yi ∈ C, the symmetric point of z with
respect to the real axis, i.e.,

z = x− yi,

is called the conjugate of z.

Property 3.13.

(i) z = z and |z| = |z|.

(ii) z1 + z2 = z1 + z2, z1 − z2 = z1 − z2, and z1z2 = z1 z2. If z2 6= 0,

(
z1

z2

)
=
z1

z2

.

(iii) Re z =
z + z

2
and Im z =

z − z
2i

.

(iv) zz = |z|2.

Example 3.14 (Computation of roots). Given z = ρeiθ, we can easily calculate zn = ρneinθ.
Conversely, if we are given a = ρ0e

iθ0 6= 0, we can also find z such that zn = a, n ∈ N. Indeed,
suppose that z = ρeiθ, then zn = a can be equivalently written as

ρneinθ = ρ0e
iθ0 .

It then follows

ρ = ρ
1/n
0 and ei

(
nθ−θ0

)
= 1.

ρ is uniquely determined. But cosine and sine are periodic function, the second equality above
can only imply

nθ − θ0 = 2kπ,

for some k ∈ Z. Therefore, θ is not uniquely determined. All z with ρ = ρ
1/n
0 and θ given by

θ0

n
+

2kπ

n
, k ∈ Z,

will satisfy the equation zn = a. Such z is called an n-th root of a. Notice that we can only
have n different roots for a given non-zero complex number a.

Definition 3.15. For z ∈ C, n ∈ N, we denote z1/n the set of n-th roots of z. If z = ρeiθ 6= 0,

z1/n =
{

n
√
ρei(

θ
n

+ 2kπ
n ) : k = 0, 1, ..., n− 1

}
.

In particular, if z = ρeiθ 6= 0 with θ ∈ (−π, π], i.e., θ = Arg z, then

n
√
ρeiθ/n = n

√
ρeiArgz/n

is called the principal n-th root of z.
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Remark 3.16. If z = 0, all the n-th roots are 0.

Example 3.17. To find all of the fourth roots of −16, we have

−16 = 16eiπ.

Therefore,

(−16)1/4 =
{

2eiπ/4, 2ei3π/4, 2ei5π/4, 2ei7π/4
}
.

Example 3.18. To find all of the n-th roots of 1, we notice that

1 = 1eiθ with θ = 0.

Therefore,

11/n =
{
ei(2kπ/n) : k = 0, 1, ..., n− 1

}
.

Definition 3.19. Given a set S ⊂ C, a point z0 ∈ C is called an interior point of S if there is
r0 > 0 such that

Br0(z0) = {z ∈ C : |z − z0| < r0} ⊂ S.

A point z0 ∈ C is called an exterior point of S if there is r1 > 0 such that

Br1(z0) = {z ∈ C : |z − z0| < r1} ⊂ C\S.

A point z0 is a boundary point of S if it is neither an interior point nor an exterior point of S.
A point z0 is an accumulation point or a limit point if for any r > 0,

Br(z0) ∩ S 6= φ.

Definition 3.20. For a set S ⊂ C, the interior of S consists of all its interior points. We said
that S is open if every point in S is an interior point.

Definition 3.21. A set S is closed if the complement C\S is open. The closure of S is the
closed set consists of all points of S and its boundary.

Remark 3.22.

(i) φ and C are both open and closed.

(ii) A set can be neither open nor closed. For example, the set S = {z ∈ C : 1 < |z| ≤ 2}.

(iii) For the set S in (ii), the interior of S is {z ∈ C : 1 < |z| < 2}, and the closure of S is
{z ∈ C : 1 ≤ |z| ≤ 2}.

Definition 3.23. A set S is connected if it cannot be partitioned into two part S = S1 ∪S2 for
nonempty S1, S2 such that

S1 ⊂ U and S2 ⊂ V

where U and V are disjoint open sets.
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4 Functions on Subsets of the Complex Plane

Definition 4.1. Let S1 and S2 be subsets of C. A function f is defined on S1 if for each z ∈ S1,
there is a unique complex number f(z) ∈ S2. We write it as

f : S1 −→ S2.

The set S1 is called the domain of f .

Remark 4.2. A complex function f on S can be represented as

f = f1 + f2i,

where f1 and f2 are two real-valued functions defined on S.

Here are some examples of functions.

Example 4.3. f(z) = z2 defined on C. If z = x+ yi, then

f(z) =
(
x2 − y2

)
+ 2xyi.

Example 4.4. f(z) = |z|2 defined on C. We have, for z = x+ yi,

f(z) = x2 + y2.

Example 4.5. For n ∈ N , given n+ 1 complex numbers a0, a1, ..., an, then the function

P (z) = a0 + a1z + ...+ anz
n

is called a polynomial of degree n. P can be defined on the whole C.

Example 4.6. Let P (z) and Q(z) be two polynomials. The quotient P (z)/Q(z) is called a
rational function and is defined at each point z with Q(z) 6= 0. For example, the function

R(z) =
z2 + 3

z3 + z2 + 5z + 5
=

z2 + 3

(z + 1)(z2 + 5)

is defined on C\
{
−1,
√

5i,−
√

5i
}

.

Example 4.7. We know that 0 is the only square root for 0. But for a complex number z 6= 0,
the square roots of a complex number z are

z1/2 =
{√
|z|eiArg z/2,−

√
|z|eiArg z/2

}
,

which consists of two values. So z1/2 is not a function. But if we particularly choose one of
them, say, we define

f(z) =

{
|z|1/2eiArg z/2 if z 6= 0,

0 if z = 0.

Then f is a function on C. More generally, given any θ0 ∈ R, we can define a function

g(z) =

{
|z|1/2eiθ/2 if z = |z|eiθ 6= 0, θ ∈ (θ0, θ0 + 2π],

0 if z = 0,

which also corresponds to a square root of z.

12



Example 4.8.

(i) For z0 ∈ C, f1(z) := z + z0, which is a translation function.

(ii) For θ0 ∈ R, f2(z) := eiθ0z, which is a rotation function.

(iii) For r0 ∈ R, f3(z) := r0z, which is a scaling function.

(iv) f4(z) := z, which corresponds to the reflection with respect to the real axis.

All of these functions are defined on C.

Example 4.9. Given c ∈ C, the function ecz is defined on C.

Example 4.10. We define the sine and the cosine for complex numbers by

cos z :=
eiz + e−iz

2
and sin z :=

eiz − e−iz

2i
.

Also, the hyperbolic sine and the hyperbolic cosine are defined by

cosh z :=
ez + e−z

2
and sinh z :=

ez − e−z

2
.

All of these functions are defined on C.

Example 4.11. The motivation of the definition of the logarithm is to find the inverse of the
exponential function. That is, we want to solve the equation

ez = w

for given w ∈ C\{0}. Suppose that w = ρeiθ, ρ = |w|, θ = Argw, and z = x + yi, then the
above equation becomes

ex+yi = ρeiθ.

We have,

ex = ρ and eiy = eiθ,

which gives

x = ln ρ and y = θ + 2kπ, k ∈ Z.

Here ln denotes the logarithm for the real numbers. There is a multi-value problem. If we fix
α0 ∈ R, then for each θ ∈ (−π, π], we can determine a unique k ∈ Z such that

θ + 2kπ ∈ (α0, α0 + 2π].

Then we can define

log z := ln ρ+ i (θ + 2kπ) such that θ + 2kπ ∈ (α0, α0 + 2π],

which is a function on C\{0}.

13



Definition 4.12. (Principal branch of the logarithm) A branch of the logarithm is a continuous
function f defined on an open subset U of C\{0} such that

ef(z) = z

for all z ∈ U . The principal branch of the logarithm is defined by

log z := ln |z|+ iArg z

on {z : C : |z| > 0,−π < Arg z < π}.

Example 4.13. Given a branch of the logarithm defined on U and a complex number c, we can
define the power function zc to be

zc = ec log z.

If the principal branch of the logarithm is used, the above definition is called the principal branch
of the power function zc.

Remark 4.14. In general, given c ∈ C, zc might not be defined at 0.

Example 4.15. By using the principal branch of the power function zi,

ii = ei log i = ei(ln 1+πi
2 ) = e−π/2.

5 Continuity of Functions

Definition 5.1. Given a function f defined on an open set Ω, and z0 an accumulation point
of Ω\{z0}, we call that f has a limit w0 at z0 if for all ε > 0, there is δ > 0 such that

|f(z)− w0| < ε for all z ∈ Ω, 0 < |z − z0| < δ.

And we write it as

lim
z→z0

f(z) = w0.

Proposition 5.2.

(i) If limz→z0 f(z) = w1 and limz→z0 f(z) = w2, then w1 = w2.

(ii) If f(z) = u(z)+iv(z), where u and v are real-valued functions, then limz→z0 f(z) = u0+v0i
if and only if

lim
z→z0

u(z) = u0 and lim
z→z0

v(z) = v0.

(iii) If limz→z0 f(z) = w1 and limz→z0 g(z) = w2, then

lim
z→z0

(f(z) + g(z)) = w1 + w2 and lim
z→z0

(f(z)g(z)) = w1w2.

If, in addition, w2 6= 0, then

lim
z→z0

f(z)

g(z)
=
w1

w2

.
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Example 5.3. To show that if f(z) = iz/2, then

lim
z→1

f(z) =
i

2
.

Notice that ∣∣∣∣f(z)− i

2

∣∣∣∣ =

∣∣∣∣iz2 − i

2

∣∣∣∣ =
|z − 1|

2
.

We have ∣∣∣∣f(z)− i

2

∣∣∣∣ < ε provided |z − 1| < 2ε.

Example 5.4. For a polynomial P (z) = a0 + a1z+ a2z
2 + ...+ anz

n with a0, ..., an ∈ C, n ∈ N,
we have the limit

lim
z→z0

P (z) = a0 + a1z0 + a2z
2
0 + ...+ anz

n
0 .

Example 5.5. Check that if the function

f(z) := z/z, z 6= 0,

has a limit at 0. Notice that, for z = x+ yi 6= 0,

Re f =
x2 − y2

x2 + y2
.

If we approach the origin along the real axis, for all x ∈ R, we have

Re f(x) = 1.

And if we approach the origin along the imaginary axis, for all y ∈ R, we have

Re f(yi) = −1.

Therefore, f does not have a limit at 0.

Example 5.6. Let f(z) = 1/ log z be defined by using the principal branch of the logarithm on
Ω = {z : C : |z| > 0,−π < Arg z < π}. To show that

lim
z→0

f(z) = 0,

we recall that for z ∈ Ω,

f(z) =
1

log z
=

1

ln |z|+ iArg z
.

Hence,

|f(z)| ≤ 1√
(ln |z|)2 + (Arg z)2

≤ − 1

ln |z|

for all z ∈ Ω with |z| < 1. Therefore,

|f(z)| < ε provided |z| < min
{

1, e−1/ε
}
.
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Definition 5.7. Given a function f defined on an open set Ω ⊂ C, we call that f is continuous
at z0 ∈ Ω if

lim
z→z0

f(z) = f(z0).

If f is continuous at every point z ∈ Ω, we call that f is continuous on Ω.

Proposition 5.8. If f and g are functions on an open set Ω ⊂ C and continuous at z0 ∈ Ω,
then f+g and fg are both continuous at z0. Moreover, if g(z0) 6= 0, then f/g is also continuous
at z0.

Proposition 5.9. For f : Ω1 → Ω2 and g : Ω2 → C, where Ω1 and Ω2 are open sets in C,
suppose that f is continuous at z0 ∈ Ω1 and that g is continuous at f(z0), then the composition
g ◦ f is continuous at z0.

Example 5.10. Re z, Im z, |z| and z are all continuous functions. If f : Ω→ C is continuous
on an open set Ω ⊂ C, then |f(z)| is also continuous on Ω.

Example 5.11. Define the function

f(z) :=

{
z/z, if z 6= 0,

0, if z = 0.

By Example 5.5, f does not have a limit at 0. Therefore, f is not continuous at 0.

Example 5.12. In this example, we will check for what c ∈ C, the function

f(z) :=

{
zc, if z 6= 0,

0, if z = 0,

is continuous at 0. Here zc is defined by using the following definition of the logarithm on
C\{0}:

log z = ln |z|+ iArg z.

For z 6= 0,

zc = ec log z = ec(ln |z|+iθ).

where θ = Arg z. Suppose that c = c1 + c2i, c1, c2 ∈ R, then the above equality becomes

zc = e(c1 ln |z|−c2θ)+i(c1θ+c2 ln |z|) = |z|c1e−c2θei(c1θ+c2 ln |z|).

We divide it into three cases.

(i) For c1 = 0, we have

zc = e−c2θeic2 ln |z|, z 6= 0.

Taking the modulus of f ,

|f(z)| = e−c2θ.
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If f is continuous at 0, then limz→0 f(z) = 0 by the definition. Equivalently, it holds
limz→0 |f(z)| = 0. Now, we first approach the origin along the ray with angle 0. We have

|f(z)| = 1 for all z with Arg z = 0.

Similarly, we can approach the origin along the ray with angle π/2 and have

|f(z)| = e−c2π/2 for all z with Arg z =
π

2
.

Therefore, if c2 6= 0, |f | is not continuous at 0, which leads a contradiction. As for the
case c1 = c2 = 0, we have

|f(z)| = 1 for all z 6= 0.

We conclude that f is not continuous at 0 if c1 = 0.

(ii) For c1 < 0, it holds

|f(z)| = |z|c1e−c2θ for all z 6= 0.

In this case, for any θ fixed, since c1 < 0,

lim
|z|→0
|f(z)| =∞,

which implies that f is not continuous at 0.

(iii) For c1 > 0, it holds

|f(z)| = |z|c1e−c2θ for all z 6= 0.

In this case, for any θ fixed, since c1 > 0,

lim
|z|→0
|f(z)| = 0.

As a consequence, f is continuous at 0 if c1 > 0.

In summary, f is continuous at 0 if and only if Re c > 0.

Example 5.13. Let f be the principal square-root function defined by

f(z) =

{
|z|1/2eiArg z/2 if z 6= 0,

0 if z = 0.

Then f is discontinuous on S = {z ∈ C : Re z < 0, Im z = 0}. To see this, given a point −R ∈
S, R > 0, we can draw a circle centered at 0 with radius R. If we approach −R along the circle
from above, the limit equals to

√
Reiπ/2 =

√
Ri. On the other hand, if we approach −R along

the circle from below, the limit equals to
√
Re−iπ/2 = −

√
Ri. Consequently, f does not have a

limit at −R, and thus is discontinuous there.
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6 Differentiability of Functions and the Cauchy-Riemann

Equations

Definition 6.1. Let f be a function on an open set Ω. f is differentiable or holomorphic at
z0 ∈ Ω if the limit

lim
z→z0

f(z)− f(z0)

z − z0

exists. And the limit, if it exists, is called the derivative of f at z0 and denoted by f ′(z0). The
function f is said to be differentiable (or holomorphic) on Ω if it is differentiable at every point
of Ω.

Example 6.2. Let f(z) = 1/z on C\{0}. At each z0 6= 0, we have

f(z)− f(z0)

z − z0

=

1

z
− 1

z0

z − z0

= − 1

z0z

Therefore,

lim
z→z0

f(z)− f(z0)

z − z0

= − 1

z2
0

.

That is, f is differentiable at z0 6= 0, and f ′(z0) = − 1

z2
0

.

Example 6.3. Let f(z) = z on C. For any z0 ∈ C, we have

f(z)− f(z0)

z − z0

=
z − z0

z − z0

=
w

w
,

where w = z−z0. Suppose that the limit limz→z0
f(z)− f(z0)

z − z0

exists, then equivalently the limit

limw→0
w

w
exists. A same argument in Example 5.5 implies that

w

w
does not have a limit at 0.

Therefore, f is not differentiable at every z0 ∈ C.

Example 6.4. Let f(z) = c for some c ∈ C, then f is differentiable on C with

f ′(z) = 0.

Let g(z) = zn for some n ∈ N, then g is differentiable on C with

g′(z) = nzn−1.

Moreover, for a polynomial P (z) = a0 + a1z + ... + anz
n, a0, a1, ..., an ∈ C, P is differentiable

on C with

P ′(z) = a1 + 2a2z + ...+ nanz
n−1.

Proposition 6.5. If f and g are differentiable functions on Ω, then
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(i) f + g is differentiable on Ω, and (f + g)′ = f ′ + g′.

(ii) fg is differentiable on Ω, and (fg)′ = f ′g + fg′.

(iii) If g(z0) 6= 0 for z0 ∈ Ω, then f/g is differentiable at z0, and(
f

g

)′
=
f ′g − fg′

g2

Moreover, if f : Ω1 → Ω2 and g : Ω2 → C are differentiable, then the composition g ◦ f is
differentiable on Ω1, and the chain rule holds

(g (f(z)))′ = g′ (f(z)) f ′(z).

Example 6.6. Let f(z) = |z|2 on C. At each z0 ∈ C, we have

f(z)− f(z0)

z − z0

=
|z|2 − |z0|2

z − z0

.

By letting w = z − z0,

|z|2 = |w + z0|2 = (w + z0)(w + z0) = ww + wz0 + z0w + |z0|2.

Thus,

f(z)− f(z0)

z − z0

=
ww + wz0 + z0w

w
= w + z0 + z0

w

w
. (6.1)

If z0 = 0, (6.1) becomes

f(z)− f(0)

z − 0
= w,

which implies

lim
z→0

f(z)− f(0)

z − 0
= lim

w→0
w = 0.

Hence, f is differentiable at 0 with f ′(0) = 0. But if z0 6= 0, the last term on the right-hand

side of (6.1), i.e., z0
w

w
, has no limit at z0 as w → 0. Therefore, f is not differentiable at every

z0 6= 0.

Remark 6.7. Example 6.6 illustrates the following facts.

(i) A function can be differentiable at a point z, but nowhere else in any neighborhood of that
point.

(ii) By writing a function f in the form f(z) = u(x, y) + iv(x, y), z = x + yi, we may have
u and v are both differentiable of all orders in variables (x, y) at a point (x0, y0), but f is
not differentiable at z0 = x0 + y0i.

(iii) The continuity of a function at a point does not imply the differentiability of the function
there.
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Proposition 6.8. If f is differentiable at z0, then f is continuous at z0.

Proof.

lim
z→z0

(f(z)− f(z0)) = lim
z→z0

f(z)− f(z0)

z − z0

lim
z→z0

(z − z0) = f ′(z0) · 0 = 0.

Theorem 6.9. Let f(z) = u(x, y) + iv(x, y), z = x + yi, be defined on a neighborhood of
z0 = x0 +y0i. If f is differentiable at z0, then the partial derivatives of u and v exist and satisfy
the Cauchy-Riemann equations

ux = vy and uy = −vx

at (x0, y0). Moreover, f ′(z0) can be written as

f ′(z0) = ux(x0, y0) + ivx(x0, y0).

Proof. Since f ′(z0) exists, using the definition of f ′(z0) and approaching z0 = x0 + y0i by
(x0 + h) + y0i with h ∈ R,

f ′(z0) = lim
h→0

f((x0 + h) + y0i)− f(x0 + y0i)

h

= lim
h→0

[
u(x0 + h, y0)− u(x0, y0)

h
+ i

v(x0 + h, y0)− v(x0, y0)

h

]
= ux(x0, y0) + ivx(x0, y0).

On the other hand, we can also approach z0 = x0 + y0i by x0 + (y0 + h)i with h ∈ R, which
gives

f ′(z0) = lim
h→0

f(x0 + (y0 + h)i)− f(x0 + y0i)

ih

= lim
h→0

[
−i u(x0, y0 + h)− u(x0, y0)

h
+
v(x0, y0 + h)− v(x0, y0)

h

]
= vy(x0, y0)− iuy(x0, y0).

Then we compete the proof by matching the real and imaginary parts of these two equalities.

Example 6.10. Recall that in Example 6.6, f(z) = |z|2 is differentiable only at z = 0 with
f ′(0) = 0. Notice that f(z) = u(x, y) + iv(x, y), z = x+ yi, with

u(x, y) = x2 + y2 and v(x, y) = 0.

It holds that u and v satisfy the Cauchy-Riemann equations at (0, 0). And we have

f ′(0) = 0 = ux(0, 0) + ivx(0, 0).

But f cannot be differentiable at any z 6= 0 since u and v do not satisfy the Cauchy-Riemann
equations there.
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Example 6.11. Let f(z) = u(x, y) + iv(x, y), z = x+ yi, be defined by

f(z) =

{
z2/z, if z 6= 0,

0, if z = 0,

then

u(x, y) =
x3 − 3xy2

x2 + y2
and v(x, y) =

−3x2y + y3

x2 + y2

if (x, y) 6= (0, 0). Also, u(0, 0) = v(0, 0) = 0. Notice that

ux(0, 0) = lim
h→0

u(h, 0)− u(0, 0)

h
= lim

h→0

h

h
= 1

and

vy(0, 0) = lim
h→0

v(0, h)− v(0, 0)

h
= lim

h→0

h

h
= 1.

We have ux = vy at (0, 0). Similarly, we have uy = −vx = 0 at (0, 0). That is, the Cauchy-
Riemann equations are satisfied at z = 0. In contrast, for z 6= 0,

f(z)− f(0)

z − 0
=

(
z

z

)2

does not have a limit as z → 0. To see this, if we approach 0 by z = ρeiθ0 for some fixed θ0 ∈ R
and let ρ→ 0, we have (

z

z

)2

= e−4iθ0 .

We will get different limits as ρ→ 0 with different θ0’s.

Theorem 6.12. Let f(z) = u(x, y)+iv(x, y), z = x+yi, be defined on an open set Ω. If u and v
are continuously differentiable and satisfy the Cauchy-Riemann equations at z0 = x0 + y0i ∈ Ω,
then f is differentiable at z0 with

f ′(z0) = ux(x0, y0) + ivx(x0, y0).

Proof. By the continuous differentiability of u and v,

u(x0 + h1, y0 + h2)− u(x0, y0) = ux(x0, y0)h1 + uy(x0, y0)h2 + ϕ1(h)|h|,
v(x0 + h1, y0 + h2)− v(x0, y0) = vx(x0, y0)h1 + vy(x0, y0)h2 + φ2(h)|h|,

where ϕ1(h), ϕ2(h)→ 0 as h→ 0, h = h1 + h2i. Then we have

f(z0 + h)− f(z0)

= (ux(x0, y0) + ivx(x0, y0))h1 + (uy(x0, y0) + ivy(x0, y0))h2 + (ϕ1(h) + iϕ2(h)) |h|.

Using the Cauchy-Riemann equations, the above equality becomes

f(z0 + h)− f(z0)

= (ux(x0, y0) + ivx(x0, y0))h1 + (−vx(x0, y0) + iux(x0, y0))h2 + (ϕ1(h) + iϕ2(h)) |h|
= (ux(x0, y0) + ivx(x0, y0)) (h1 + h2i) + (ϕ1(h) + iϕ2(h)) |h|.

By passing to the limit h→ 0, we complete the proof.
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Example 6.13. Recall that in Example 6.11, f(z) = u(x, y) + iv(x, y), z = x+ yi, defined by

f(z) =

{
z2/z if z 6= 0,

0 if z = 0.

Though u and v satisfy the Cauchy-Riemann equations at (x, y) = (0, 0), the partial derivatives
of u and v are not continuous at (0, 0). The assumptions of Theorem 6.12 do not holds.

Example 6.14. Consider the function f(z) = ez = ex (cos y + i sin y), where z = x+ yi. Then
we have f(z) = u(x, y) + iv(x, y) with

u(x, y) = ex cos y and v(x, y) = ex sin y.

Notice that u and v are both continuously differentiable and satisfy

ux = ex cos y = vy and uy = −ex sin y = −vx.

for all (x, y) ∈ R2. Therefore, f is differentiable on C with

f ′ = ux + ivx = ex cos y + iex sin y.

Note that f ′(z) = f(z) for all z ∈ C.

Example 6.15. Let f(z) = x3 + i(1− y)3, z = x+ yi. Then f(z) = u(x, y) + iv(x, y) with

u(x, y) = x3 and v(x, y) = (1− y)3.

First, notice that u and v are continuously differentiable on R2. As for the Cauchy-Riemann
equations,

ux = 3x2, uy = 0,
vx = 0, vy = −3(1− y)2.

Then we always have uy = −vx. But ux = vy only if (x, y) = (0, 1). Therefore, f is differentiable
only at z = i with

f ′(i) = ux(0, 1) + ivx(0, 1) = 0.

Example 6.16. Let f(z) = sin x cosh y + i cosx sinh y, z = x+ yi ∈ C. Then f = u+ iv with

u(x, y) = sin x cosh y and v(x, y) = cos x sinh y.

Since u and v are continuously differentiable and satisfy

ux = cosx cosh y = vy and uy = sinx sinh y = −vx

everywhere, we conclude that f is differentiable on C with

f ′(z) = ux + ivx = cosx cosh y − i sinx sinh y.

Theorem 6.17. If f ′(z) = 0 on an open connected set Ω, then f is a constant on Ω.
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Lemma 6.18. If an open set Ω is connected, then it is polygonally connected. That is, for
any z1, z2 ∈ Ω, z1 and z2 can be connected by a polygonal line consisting of finitely many line
segments in Ω.

Proof. If Ω = φ, then there is nothing to prove. By choosing a point z0 ∈ Ω, we define the set

S = {z ∈ Ω : z can be connected to z0 by a polygonal line} .

Given a point z1 ∈ S, since Ω is open, there is ε1 > 0 small enough such that Bε1(z1) ⊂ Ω.
Notice that any point in Bε1(z1) can be connected to z1 by a line segment. Thus, Bε1(z1) ⊂ S,
which implies that S is open.

Suppose that Ω\S 6= φ, say, there is z2 ∈ Ω\S. Again, we have Bε2(z2) ⊂ S for some ε2 > 0.
All point in Bε2(z2) do not belong to S. Otherwise, z2 can be polygonally connected to z0.
Thus, Ω\S is also open, which leads a contradiction. We conclude that Ω\S = φ, i.e., S = Ω.
Therefore, for any two points w1, w2 ∈ Ω, they can be connected by a polygonal line in Ω by
combining one polygonal line connecting z0 to w1 and another one connecting z0 to w2.

Proof of Theorem 6.17. Let f(z) = u(x, y) + iv(x, y) for z = x+ yi. Since f ′(z) = 0,

f ′(z) = ux(x, y) + ivx(x, y) = 0.

In view of the Cauchy-Riemann equations, we have

ux = uy = vx = vy = 0 on Ω.

Next, if z1, z2 ∈ Ω such that the line segment L between z1 and z2 lie in Ω, we will show that
f(z) is a constant on L. L can be parametrized by

L =
{
z1 + sw : s ∈

[
0, |z2 − z1|

]}
,

where w = w1 + w2i =
z2 − z1

|z2 − z1|
is the unit vector in the direction from z1 to z2. Now, we

consider the restriction of u on L, i.e., u(x1 + w1s, y1 + w2s), where z1 = x1 + y1i. We have

d

ds
u(x1 + w1s, y1 + w2s) = ∇u

∣∣∣
(x1+w1s,y1+w2s)

· w,

where ∇u = (ux, uy) is the gradient of u. Since ux = uy = 0, it follows that

d

ds
u(x1 + w1s, y1 + w2s) = 0 on

[
0, |z2 − z1|

]
.

This gives u is a constant on L. Since there is always a finite number of line segments connecting
any two points in Ω, u is a constant on Ω. Similarly, by applying the same arguments to v, v
is a constant on Ω. Therefore, f is a constant on Ω.

Example 6.19. Suppose that f and f are both differentiable on an open connected set Ω, we
show that f must be a constant.

By writing f(z) = u(x, y) + iv(x, y), z = x+ yi, we have f(z) = u(x, y)− iv(x, y). Since f
is differentiable on Ω, the Cauchy-Riemann equations

ux = vy and uy = −vx hold on Ω.

23



Since f is also differentiable on Ω, the Cauchy-Riemann equations

ux = −vy and uy = vx hold on Ω.

Therefore, we have ux = uy = vx = vy = 0 on Ω, which implies f ′(z) = 0 on Ω. By Theorem
6.17, f is a constant.

Example 6.20. Suppose that f is differentiable on an open connected set Ω. If |f | is a constant
on Ω, we show that f must be a constant.

If |f | = 0 on Ω, then it follows that f = 0 on Ω. Now, we assume that |f | = c 6= 0 on Ω,
we have

f(z)f(z) = |f |2 = c2 6= 0.

Notice that f 6= 0 on Ω. And hence

f(z) =
c2

f(z)

is differentiable on Ω. The last example implies that f is a constant.

7 Analyticity and Harmonicity

Definition 7.1. Let f be a function defined on an open set Ω ⊂ C. f is called analytic at
a point z0 ∈ Ω if f is differentiable on a neighborhood Bε(z0) ⊂ Ω for some ε > 0. If f is
differentiable on Ω, then we also called f is analytic on Ω. Moreover, if f is differentiable or
analytic on Ω, we call f an entire function.

Remark 7.2. In some literatures, the analyticity f is defined as follows: f is called analytic
at a point z0 ∈ Ω if there is a power series

∑
an(z− z0)n with a radius of convergence such that

f(z) =
∞∑
n=0

an(z − z0)n

for all z ∈ Bε(z0) ⊂ Ω for some ε > 0. And f is called analytic on Ω if f has a power
series expansion at every point in Ω. It can be proved that the two definitions of analyticity are
equivalent.

Example 7.3. f(z) = 1/z is differentiable on C\{0}with f ′(z) = −1/z2 for z 6= 0. So f is
analytic on C\{0}. g(z) = |z|2 is differentiable only at z = 0. Thus, g is not analytic anywhere.
Finally, we have that every polynomial is an entire function.

Theorem 7.4. Suppost that f = u + iv is analytic on an open set Ω. Then u and v are
harmonic functions on Ω.

Proof. To show this, we need to use the fact that if a complex function is analytic at a point,
then its real and imaginary parts have continuous partial derivatives of all orders there.

Since u and v satisfy the Cauchy-Riemann equations, it holds that

ux = vy and uy = −vx on Ω.
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Therefore,

uxx = vxy and uyy = −vxy on Ω.

We get

uxx + uyy = vxy − vxy = 0 on Ω.

That is, u is a harmonic function on Ω. The arguments for v is similar.

8 Integrals

Definition 8.1. Let w be a complex-valued function of a real variable t, written as

w(t) = u(t) + iv(t),

for some real-valued functions u and v. The derivative of w is defined by

d

dt
w(t) = w′(t) = u′(t) + iv′(t),

provided that u and v are differentiable. And the definite integral of w over an interval [a, b] is
defined by

ˆ b

a

w(t)dt =

ˆ b

a

u(t)dt+ i

ˆ b

a

v(t)dt

provided the integrals on the right-hand side exist.

Example 8.2.

ˆ π/4

0

eitdt =

ˆ π/4

0

(cos t+ i sin t) dt =

ˆ π/4

0

cos tdt+ i

ˆ π/4

0

sin tdt

= sin t

∣∣∣∣π/4
0

+ i(− cos t)

∣∣∣∣π/4
0

=

√
2

2
+

(
1−
√

2

2

)
i.

Proposition 8.3. If w(t) = u(t)+iv(t) is a complex-valued function on [a, b], and W ′(t) = w(t),
i.e., W (t) = U(t) + iV (t) with U ′(t) = u(t), V ′(t) = v(t), then

ˆ b

a

w(t)dt = W (b)−W (a)

Proof. By the fundamental theorem of calculus,

ˆ b

a

u(t)dt = U(b)− U(a) and

ˆ b

a

v(t)dt = V (b)− V (a).
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Example 8.4. Since

d

dt

eit

i
= eit,

we have

ˆ π/4

0

eitdt =
eit

i

∣∣∣∣π/4
0

= −ieit
∣∣∣∣π/4
0

= −i

(√
2

2
+

√
2

2
i− 1

)
=

√
2

2
+

(
1−
√

2

2

)
i.

Definition 8.5. A (parametrized) curve γ is a set

γ = {z = z(t) = x(t) + y(t)i : t ∈ [a, b]} , (8.1)

where x(t) and y(t) are continuous real functions on [a, b]. γ is called a simple curve or a
Jordan curve if it does not intersect itself, that is, z(t1) 6= z(t2) unless t1 = t2. γ is called a
simple closed curve if it does not intersect itself except for z(a) = z(b). If x(t) and y(t) are
continuously differentiable on [a, b], then γ is called a smooth curve. γ is called a piecewise
smooth curve if there are points

a = a0 < a1 < ... < an = b,

such that x(t) and y(t) are smooth in each interval [ak−1, ak], k = 1, ..., n.

Remark 8.6.

(i) The set defined by (8.1) is only a geometric object, which does not have a direction. But if
we parametrize it by the parametrization z(t) = x(t)+y(t)i, then it is assigned a direction.

(ii) The length of a smooth curve γ = {z = z(t) : t ∈ [a, b]} is

length(γ) =

ˆ b

a

|z′(t)|dt.

If γ is only piecewise smooth, its length is the sum of the lengths of its smooth parts.

Definition 8.7. Given curve γ defined in (8.1), we use −γ to denote the same set of points of
(8.1) but with reverse direction, say,

−γ = {z(a+ b− t) : t ∈ [a, b]} .

Definition 8.8. Two parametrization z1(t) : [a, b] → C and z2(t) : [c, d] → C are called
equivalent if there exists a continuously differentiable bijection s 7→ t(s) from [c, d] to [a, b] such
that t′(s) > 0 and

z2(s) = z1(t(s)).

Example 8.9. Here are some examples of curves.

(i) The polygonal line defined by

z(t) =

{
t+ it, t ∈ [0, 1],

t+ i, t ∈ [1, 2],

is a piecewise smooth curve.

26



(ii) The unit circle with parametrization

z(θ) = eiθ, θ ∈ [0, 2π],

is a simple closed smooth curve.

(iii) If γ be the unit circle defined in (ii). Then −γ can be defined by the parametrization

z(θ) = e−iθ, θ ∈ [0, 2π],

(iv) Given m ∈ Z\{0}, the curve defined by

z(θ) = eimθ, θ ∈ [0, 2π],

winds around the origin m times counterclockwise if m > 0. If m < 0, it winds around
the origin m times clockwise.

Formal Calculation. Suppose that there is a differentiable function F = U + iV such that
F ′ = f on Ω, we have, by using the Cauchy-Riemann equations,

d

dt
F (z(t)) =

d

dt
F (x(t) + iy(t))

=
d

dt
U(x(t), y(t)) + i

d

dt
V (x(t), y(t))

= Ux(x(t), y(t))x′(t) + Uy(x(t), y(t))y′(t) + iVx(x(t), y(t))x′(t) + iVy(x(t), y(t))y′(t)

= Ux(x(t), y(t))x′(t)− Vx(x(t), y(t))y′(t)− iVx(x(t), y(t))x′(t) + iUx(x(t), y(t))y′(t)

= (Ux(x(t), y(t)) + iVx(x(t), y(t)))(x′(t) + iy′(t))

= f(z(t))z′(t). (8.2)

Then Proposition 8.3 implies that

ˆ b

a

f(z(t))z′(t)dt = F (z(b))− F (z(a)).

Definition 8.10. Let γ be a smooth curve with parametrization z(t), t ∈ [a, b]. If f is a
continuous function on an open set Ω containing γ, we define

ˆ
γ

f(z)dz =

ˆ b

a

f(z(t))z′(t)dt.

If γ is only piecewise smooth, which is smooth on intervals [ak−1, ak], k = 1, ..., n, where a =
a0 < a1 < ... < an = b, then

ˆ
γ

f(z)dz =
n∑
k=1

ˆ ak

ak−1

f(z(t))z′(t)dt.

Remark 8.11. The definition of integrals of functions along a curve γ is independent of the
choice of the parametrization for γ. For

γ = {z = z1(t) : t ∈ [a, b]}
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and an equivalent parametrization z2 : [c, d]→ C with

z2(s) = z1(t(s)), t′(s) > 0,

we have ˆ b

a

f(z1(t))z′1(t)dt =

ˆ d

c

f(z1(t(s)))z′1(t(s))t′(s)ds =

ˆ d

c

f(z2(s))z′2(s)ds.

Proposition 8.12.

(i) If c1, c2 ∈ C, thenˆ
γ

(c1f1(z) + c2f2(z)) dz = c1

ˆ
γ

f1(z)dz + c2

ˆ
γ

f2(z)dz.

(ii) ˆ
−γ
f(z)dz = −

ˆ
γ

f(z)dz.

(iii) ∣∣∣∣ˆ
γ

f(z)dz

∣∣∣∣ ≤ sup
z∈γ
|f(z)| · length(γ).

Proof. Without loss of generality, we assume that γ is smooth. Part (i) follows the linearity of
the Riemann integrals. For (ii), if

γ = {z = z(t) : t ∈ [a, b]} ,

we haveˆ
−γ
f(z)dz =

ˆ b

a

f(z(a+ b− s))(z(a+ b− s))′ds = −
ˆ b

a

f(z(a+ b− s))z′(a+ b− s)ds

=

ˆ a

b

f(z(t))z′(t)dt = −
ˆ b

a

f(z(t))z′(t)dt = −
ˆ
γ

f(z)dz.

For (iii), ∣∣∣∣ˆ
γ

f(z)dz

∣∣∣∣ ≤ sup
t∈[a,b]

|f(z(t))|
ˆ b

a

|z′(t)|dt = sup
z∈γ
|f(z)| · length(γ).

Example 8.13. To evaluate ˆ
γ

dz

z
,

where γ =
{
z = eiθ : θ ∈ [0, π]

}
, it holds

ˆ
γ

dz

z
=

ˆ π

0

1

eiθ
ieiθdθ = i

ˆ π

0

dθ = πi.
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Example 8.14. Let γ be a smooth curve with parametrization z(t), t ∈ [a, b]. Notice that

d

dt
(z(t))2 = 2z(t)z′(t),

it holds

ˆ
γ

zdz =

ˆ b

a

z(t)z′(t)dt =
1

2
(z(t))2

∣∣∣∣b
a

=
1

2

(
(z(b))2 − (z(a))2

)
.

Example 8.15. Let γ1 be the polygonal line starting from 0 to i, and then coming from i to
1 + i, then

ˆ
γ1

(
y − x− 3x2i

)
dz =

ˆ 1

0

tidt+

ˆ 1

0

(
1− t− 3t2i

)
dt =

i

2
+

1

2
− i =

1

2
− i

2
.

Let γ2 be the line segment from 0 to 1 + i, then

ˆ
γ2

(
y − x− 3x2i

)
dz =

ˆ 1

0

(
t− t− 3t2i

)
(1 + i)dt = 1− i.

Example 8.16. Let γ be the semicircular path parametrized by

z(θ) = 3eiθ, θ ∈ [0, π],

and f(z) = z1/2 be defined by using the branch of the logarithm

log z = ln |z|+ iθ, θ ∈ arg z, θ ∈
(
−π

2
,
3π

2

)
.

Then ˆ
γ

f(z)dz =

ˆ π

0

(
3eiθ
)1/2

3ieiθdθ =

ˆ π

0

e
1
2

(ln 3+iθ)3ieiθdθ = 3
√

3i

ˆ π

0

e3iθ/2dθ

= 2
√

3
(
e3πi/2 − 1

)
= −2

√
3 (1 + i) .

Example 8.17. Let γ be the unit circle with parametrization

z(θ) = eiθ, θ ∈ [−π, π].

And let f(z) = z−1+i be defined by using the principal branch of the logarithm. Notice that f is
defined only for θ ∈ (−π, π) on γ. On the other hand, for θ ∈ (−π, π),

f(z(θ))z′(θ) = e(−1+i)(iθ)ieiθ = ie−θ

is continuous in (−π, π) and has limits at θ = ±π. Thus, the (improper) integral exists and

ˆ
γ

f(z)dz =

ˆ π

−π
ie−θdθ = i

(
eπ − e−π

)
.
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Example 8.18. To estimate

∣∣∣∣ˆ
γ

z − 2

z4 + 1
dz

∣∣∣∣, where γ is the arc of the circle |z| = 2 from z = 2

to z = 2i, we have ∣∣∣∣ z − 2

z4 + 1

∣∣∣∣ ≤ |z|+ 2

|z|4 − 1
=

4

15
for |z| = 2.

Therefore, ∣∣∣∣ˆ
γ

z − 2

z4 + 1
dz

∣∣∣∣ ≤ 4

15
length(γ) =

4π

15
.

Example 8.19. Let γR be the semicircle parametrized by

z(θ) = Reiθ, θ ∈ [0, π].

We are going to show that

lim
R→∞

ˆ
γR

z + 1

(z2 + 4)(z2 + 9)
dz = 0

without actually evaluating the integral. Notice that∣∣∣∣ z + 1

(z2 + 4)(z2 + 9)

∣∣∣∣ ≤ |z|+ 1

(|z|2 − 4)(|z|2 − 9)
=

R + 1

(R2 − 4)(R2 − 9)
on γR, R > 3.

Thus, for R > 3,∣∣∣∣ˆ
γR

z + 1

(z2 + 4)(z2 + 9)
dz

∣∣∣∣ ≤ R + 1

(R2 − 4)(R2 − 9)
· πR −→ 0 as R→∞.

As a consequence, we obtain the limit

lim
R→∞

ˆ
γR

z + 1

(z2 + 4)(z2 + 9)
dz = 0.

9 Antiderivatives and Independence of Path

Definition 9.1. Let f be a function defined on an open connected set Ω. If there is a differen-
tiable function F such that F ′ = f on Ω, then we call F an antiderivative of f .

Remark 9.2. Antiderivatives of a given function are unique up to a constant.

Theorem 9.3. Let f be a continuous function on an open connected set Ω. If f has an
antiderivative F on Ω, then for any piecewise smooth curve γ from z1 to z2 for some z1, z2 ∈ Ω,
we have ˆ

γ

f(z)dz = F (z2)− F (z1).

Remark 9.4. In particular, if f has an antiderivative, then the integral of f along any piecewise
smooth closed curve equals to 0.
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Proof. Let γ be parametrized by z(t) : [a, b]→ Ω. If γ is smooth, then, as in (8.2),

ˆ
γ

f(z)dz =

ˆ b

a

f(z(t))z′(t)dt =

ˆ b

a

d

dt
F (z(t))dt = F (z(b))− F (z(a)) = F (z2)− F (z1).

If γ is only piecewise smooth, let z be smooth on each interval [ak−1, ak], k = 1, ..., n, where
a = a0 < a1 < ... < an = b. Then

ˆ
γ

f(z)dz =
n∑
k=1

[F (z(ak))− F (z(ak−1))] = F (z(b))− F (z(a)) = F (z2)− F (z1).

Theorem 9.5. Let f be a continuous function on an open connected set Ω. If

ˆ
γ

f(z)dz = 0

for all piecewise smooth closed curve in Ω, then f has an antiderivative.

Lemma 9.6. Under the same assumption as in Theorem 9.5, given z1, z2 ∈ Ω,

ˆ
γ1

f(z)dz =

ˆ
γ2

f(z)dz

for any piecewise smooth curves γ1 and γ2 from z1 to z2.

Proof. Let γ1 and γ2 be two piecewise smooth curves from z1 to z2, z1, z2 ∈ Ω, we have

ˆ
γ1

f(z)dz −
ˆ
γ2

f(z)dz =

ˆ
γ1∪(−γ2)

f(z)dz = 0.

Proof of Theorem 9.5. Fix z0 ∈ Ω. In view of Lemma 9.6, we can define a function

F (z) =

ˆ
γz0,z

f(w)dw, z ∈ Ω,

where γz0,z is any smooth curve from z0 to z. Then, for each z ∈ Ω and h ∈ C with |h|
sufficiently small,

F (z + h)− F (z) =

ˆ
γz0,z+h

f(w)dw −
ˆ
γz0,z

f(w)dw =

ˆ
γz,z+h

f(w)dw,

where γz,z′ denotes a curve lying in Ω from z to z′. Since the integration is independent of the
choice of curves, we have

F (z + h)− F (z) =

ˆ 1

0

f(z + ht)hdt,
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and hence

F (z + h)− F (z)

h
− f(z) =

1

h

ˆ 1

0

[f(z + ht)− f(z)]hdt =

ˆ 1

0

[f(z + ht)− f(z)] dt.

Notice that by the continuity of f ,∣∣∣∣ˆ 1

0

[f(z + ht)− f(z)] dt

∣∣∣∣ ≤ sup
t∈[0,1]

|f(z + ht)− f(z)| → 0 as h→ 0,

which implies

lim
h→0

F (z + h)− F (z)

h
= f(z).

Remark 9.7. To summarize, the following three statements are equivalent.

(i) f has an antiderivative.

(ii) Integration of f from one point to another is independent of the choice of curves.

(iii) Integrals of f along closed curves have value 0.

Example 9.8. The continuous function f(z) = eπz has an antiderivative F (z) = eπz/π on C.
Hence, for any piecewise smooth curve γ from i to i/2, we have

ˆ
γ

eπzdz =
eπz

π

∣∣∣∣i/2
i

=
1 + i

π
.

Example 9.9. The function f(z) = 1/z2 has an antiderivative F (z) = −1/z on C\{0}. Hence,
ˆ
γ

dz

z2
= 0,

where γ is the unit circle parametrized by z(θ) = eiθ, θ ∈ [−π, π]. As for the function g(z) = 1/z,
the integral of g along γ cannot be evaluated in a similar way. Notice that given a branch of
the logarithm, G(z) = log z is an antiderivative of 1/z on the domain where the logarithm is
defined. But the domain of G cannot contain the whole curve γ.

Example 9.10. To evaluate the integral ˆ
γ

dz

z
,

where γ is defined as in Example 9.9, we can divide γ into two parts: γ1 is the right half from −i
to i parametrized by z1(θ) = eiθ, θ ∈

[
−π

2
,
π

2

]
, and γ2 is the left half from i to −i parametrized

by z2(θ) = eiθ, θ ∈
[
π

2
,
3π

2

]
. For γ1, we know that the principal branch of the logarithm is an

antiderivative of 1/z on an open set containing γ1. Thus,

ˆ
γ1

dz

z
= log z

∣∣∣∣i
−i

= log i− log(−i) =
πi

2
−
(
−πi

2

)
= πi,
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where we used the principal branch of the logarithm here. As for γ2, by using the branch of the
logarithm

log z = ln |z|+ iθ, where θ ∈ arg z, θ ∈ (0, 2π),

defined on {|z| > 0,Arg z 6= 0}, we have

ˆ
γ1

dz

z
= log z

∣∣∣∣−i
i

= log(−i)− log i =
3πi

2
− πi

2
= πi.

Therefore,

ˆ
γ

dz

z
=

ˆ
γ1

dz

z
+

ˆ
γ2

dz

z
= 2πi.

Example 9.11. Let f be the square-root function on
{
|z| > 0,Arg z 6= −π

2

}
defined by

f(z) = z1/2 = e
1
2

log z = |z|1/2eiθ/2 if z = |z|eiθ, θ ∈
(
−π

2
,
3π

2

)
.

That is, the power function is defined by using the following branch of the logarithm

log z = ln |z|+ iθ, where θ ∈ arg z, θ ∈
(
−π

2
,
3π

2

)
.

If γ is a curve from −3 to 3 lying above the real axis except for the endpoints, noticing that(
z3/2

)′
=

3

2
z1/2,

we have

ˆ
γ

f(z)dz =
2

3
z3/2

∣∣∣∣3
−3

= 2
√

3 (1 + i) .

10 Integration of Analytic Functions on Closed Loops

Theorem 10.1 (Cauchy-Goursat theorem). If f is analytic at all points interior to and on a
simple closed curve γ, then

ˆ
γ

f(z)dz = 0.

Theorem 10.2. If f is differentiable on an open set Ω, and γ is the boundary of an rectangle
contained in Ω, then

ˆ
γ

f(z)dz = 0.
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Proof. Let R0 be the closed rectangle with boundary γ. Assume that γ0 = γ = l1 ∪ l2 ∪ l3 ∪ l4,
counterclockwise oriented. Let zk be the midpoint of lk, k = 1, ..., 4. By connecting z1 and z3,
and connecting z2 and z4, we obtain four smaller rectangles with boundaries γ1,1, γ1,2, γ1,3 and
γ1,4. We assume that γ1,j, j = 1, ..., 4, are all counterclockwise oriented. We have

ˆ
γ0

f(z)dz =

ˆ
γ1,1

f(z)dz +

ˆ
γ1,2

f(z)dz +

ˆ
γ1,3

f(z)dz +

ˆ
γ1,4

f(z)dz.

By the triangle inequality,∣∣∣∣ˆ
γ0

f(z)dz

∣∣∣∣ =

∣∣∣∣∣
ˆ
γ1,1

f(z)dz

∣∣∣∣∣+

∣∣∣∣∣
ˆ
γ1,2

f(z)dz

∣∣∣∣∣+

∣∣∣∣∣
ˆ
γ1,3

f(z)dz

∣∣∣∣∣+

∣∣∣∣∣
ˆ
γ1,4

f(z)dz

∣∣∣∣∣ .
There must be a j ∈ {1, 2, 3, 4} such that∣∣∣∣ˆ

γ0

f(z)dz

∣∣∣∣ ≤ 4

∣∣∣∣∣
ˆ
γ1,j

f(z)dz

∣∣∣∣∣ .
Let γ1 = γ1,j with j such that the last inequality holds, and R1 be the closed rectangle with
boundary γ1. We can repeat the same process. For γn given, we divide the rectangle into four
parts with boundary γn+1,j, j = 1, ..., 4. And we can choose a j such that∣∣∣∣ˆ

γn

f(z)dz

∣∣∣∣ ≤ 4

∣∣∣∣∣
ˆ
γn+1,j

f(z)dz

∣∣∣∣∣ .
And then we denote γn+1 = γn+1,j with j such that the last inequality holds. We obtain a
sequence of rectangles Rn with boundaries γn, n ∈ N ∪ {0}, such that

R0 ⊃ R1 ⊃ ... ⊃ Rn ⊃ ... (10.1)

and ∣∣∣∣ˆ
γ0

f(z)dz

∣∣∣∣ ≤ 4n
∣∣∣∣ˆ
γn

f(z)dz

∣∣∣∣ . (10.2)

Since Rn’s are compact satisfying (10.1) with diam(Rn) → 0 as n → ∞, there is a unique
z0 ∈ Ω such that z0 ∈ Rn for all n. Since f is differentiable at z0,

lim
z→z0

∣∣∣∣f(z)− f(z0)

z − z0

− f ′(z0)

∣∣∣∣ = 0.

On each γn, since constants and polynomials have antiderivatives,

ˆ
γn

f(z)dz =

ˆ
γn

[f(z)− f(z0)− f ′(z0)(z − z0)] dz =

ˆ
γn

[
f(z)− f(z0)

z − z0

− f ′(z0)

]
(z − z0)dz.

Therefore, ∣∣∣∣ˆ
γn

f(z)dz

∣∣∣∣ ≤ sup
z∈γn

∣∣∣∣f(z)− f(z0)

z − z0

− f ′(z0)

∣∣∣∣ sup
z∈γn
|z − z0| · length(γn).
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Notice that

sup
z∈γn
|z − z0| ≤ 2−nL,

where L is the length of the diagonal of R0, and

length(γn) = 2−nlength(γ).

Therefore, ∣∣∣∣ˆ
γn

f(z)dz

∣∣∣∣ ≤ 4−nL · length(γ) sup
z∈γn

∣∣∣∣f(z)− f(z0)

z − z0

− f ′(z0)

∣∣∣∣ . (10.3)

Combining (10.2) and (10.3), we obtain∣∣∣∣ˆ
γ

f(z)dz

∣∣∣∣ ≤ L · length(γ) sup
z∈γn

∣∣∣∣f(z)− f(z0)

z − z0

− f ′(z0)

∣∣∣∣ −→ 0 as n→∞.

Theorem 10.3. If f is differentiable on an open disc Ω, then

ˆ
γ

f(z)dz = 0

for all closed curve γ in Ω.

Proof. Without loss of generality, we may assume that the disc is centered at 0. Define

F (z) =

ˆ
γ1

f(z)dz +

ˆ
γ2

f(z)dz,

where γ1 is the line segment from 0 to Re z, and γ2 is the line segment from Re z to z. By
Theorem 10.2, for h = h1 + h2i with |h| sufficiently small,

F (z + h)− F (z) =

ˆ
γ

f(z)dz,

where γ is the polygonal line starting from z to z + h1 and then from z + h1 to z + h. Using a
similar argument in the proof of Theorem 9.5,∣∣∣∣F (z + h)− F (z)

h
− f(z)

∣∣∣∣
=

∣∣∣∣1h
[ˆ 1

0

(f(z + h1t)− f(z))h1dt+

ˆ 1

0

(f(z + h1 + ih2s)− f(z)) ih2ds

]∣∣∣∣
≤ sup

t∈[0,1], s∈[0,1]

[|f(z + h1t)− f(z)|+ |f(z + h1 + ih2s)− f(z)|]

−→ 0 as h→ 0.

That is, F is an antiderivative of f , and hence the theorem follows.
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Proof of Theorem 10.1. Let K be the closed region bounded by γ. By the assumption, f is
differentiable on some bounded open set Ω containing K, and we have dist(K, ∂Ω) > 3ε for
some ε > 0, where ∂Ω is the boundary of Ω. We may assume l0 = γ is counterclockwise
oriented. And let l1 be a simple closed curve lying in the interior of l0, also counterclockwise
oriented, such that dist(z, l0) < ε for every z ∈ l1. And then we slice the strip bounded by l0
and l1 into small pieces. Each piece is contained in a disc with radius 2ε contained in Ω. By
Theorem 10.3, summing the integrals on the boundaries of all the pieces, we obtain

ˆ
l0

f(z)dz +

ˆ
−l1

f(z)dz = 0.

Here the integrals on common edges are cancelled out. The above equality shows that

ˆ
l0

f(z)dz =

ˆ
l1

f(z)dz.

We can continue in this manner to obtain a sequence of simple closed curves l0, l2, ..., ln, ...,
with length(ln)→ 0 as n→∞, and

ˆ
ln

f(z)dz =

ˆ
ln+1

f(z)dz

for all n ∈ N ∪ {0}. Therefore,

ˆ
l0

f(z)dz =

ˆ
ln

f(z)dz

for all n ∈ N. In addition, for ln, we have∣∣∣∣ˆ
ln

f(z)dz

∣∣∣∣ ≤ max
K

f · length(ln) −→ 0 as n→∞.

Thus, we complete the proof.
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Definition 10.4. A connected set Ω is called simply connected if for any two curves γ0 and γ1

in Ω, parametrized by z0(t) and z1(t), t ∈ [a, b], respectively, with same endpoints, there exists
a class of curves γs parametrized by zs(t), t ∈ [a, b], for s ∈ [0, 1], such that

zs(a) = z0(a) = z1(a) and zs(b) = z0(b) = z1(b) for all s ∈ [0, 1],

and zs(t) is jointly continuous in (s, t) ∈ [0, 1] × [a, b]. If a connected set Ω is not simply
connected, then it is called multiply connected.

Remark 10.5. There is an equivalent definition for simply connected sets as follows. A con-
nected set Ω is called simply connected if every simple closed curve in Ω encloses only points in
Ω.

Theorem 10.6. If f is analytic on an open simply connected domain Ω, thenˆ
γ

f(z)dz = 0

for all closed curve γ lying in Ω.

Proof. It suffices to show that, given w1, w2 ∈ Ω, the integral of f from w1 to w2 is independent
of the path. Let γ0 and γ1 be two curves from w1 to w2 with γj parametrized by zj(t), t ∈ [0, 1],
j = 0, 1. Since Ω is simply connected, we can find a class of curves γs parametrized by zs(t),
t ∈ [0, 1] for each s ∈ [0, 1] such that

zs(0) = w1 and zs(1) = w2 for all s ∈ [0, 1].

and the function G(s, t) := zs(t) is continuous on [0, 1] × [0, 1]. One can see that the image
K = G ([0, 1]× [0, 1]) is compact in Ω, there is ε > 0 such that dist(K, ∂Ω) > 3ε. By the
uniform continuity of G, there is δ > 0 such that

sup
t∈[0,1]

|zs1(t)− zs2(t)| < ε

provided |s1 − s2| < δ. Therefore, for any s1, s2 ∈ [0, 1] with |s1 − s2| < δ, we can find finitely
many points 0 = t0 < t1 < ... < tn = 1 such that each closed curve lk, k = 1, ..., n, consisting of
the curve from zs1(tk−1) to zs1(tk) along γs1 , the line segment from zs1(tk) to zs2(tk), the curve
from zs2(tk−1) to zs2(tk) along γs2 , and the line segment from zs2(tk−1) to zs1(tk−1), is contained
in a disc with radius 2ε in Ω. By Theorem 10.3, we have

ˆ
γs1

f(z)dz −
ˆ
γs2

f(z)dz =
n∑
k=1

ˆ
lk

f(z)dz = 0.

Dividing the interval [0, 1] into subintervals [sk−1, sk] with length less than δ and repeating
finitely many times of the above argument, the theorem is proved.

Corollary 10.7. If f is analytic on an open simply connected domain, then f has an an-
tiderivative. And the integral of f from one point to another is independent of paths.

Example 10.8. Let γ be any closed curve lying in the disc B2(0). Then
ˆ
γ

sin z

(z2 + 9)5
dz = 0.
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Example 10.9. Let Ω be an open simply connected set with 1 ∈ Ω, 0 /∈ Ω. Then there is a
branch of the logarithm f on Ω such that

f(x) = ln x for x ∈ R, x near 1.

It can be done by defining

f(z) =

ˆ
γ

dw

w

for any curve γ in Ω from 1 to z. Notice that the integral of
1

z
from 1 to z is independent of the

choice of γ by Corollary 10.7. A similar argument in the proof of Theorem 9.5 gives f ′(z) =
1

z
on Ω, and hence (

ze−f(z)
)′

= 0 on Ω.

Therefore, ze−f(z) is a constant. By taking the value at z = 1, we conclude that ze−f(z) ≡ 1,
that is,

ef(z) = z on Ω.

As for x ∈ R near 1, we have

f(x) =

ˆ x

1

dx

x
= lnx.

Example 10.10. Let Ω ⊂ C be an open simply connected set. If u is harmonic on {(x, y) :
x+yi ∈ Ω}, then there is an analytic function f on Ω such that Re f(z) = u(x, y) for z = x+yi.
To see this, let

g(z) = ux(x, y)− iuy(x, y) for z = x+ yi ∈ Ω.

Then the real and imaginary parts of g are continuously differentiable and satisfy Cauchy-
Riemann equations on the domain. Thus, g is analytic on Ω. By Corollary 10.7, g has an
antiderivative F , that is,

F ′(z) = g(z) = ux(x, y)− iuy(x, y) for z = x+ yi ∈ Ω.

Let ReF (z) = w(x, y), by using the Cauchy-Riemann equations for F ,

F ′(z) = wx(x, y)− iwy(x, y) for z = x+ yi ∈ Ω.

Therefore,

(wx, wy) = (ux, uy) for x+ yi ∈ Ω,

which implies that w − u = c is a real constant. And hence f = F − c is as desired.

For multiply connected domains, we have the following theorem.
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Theorem 10.11. Let l0, l1, ..., ln be simple closed curves with counterclockwise orientation.
lk’s, k = 1, ..., n, lying in the interior of l0, are disjoint, whose interiors have no points in
common. If f is analytic on all the curves and throughout the multiply connected domain
consisting of the points inside l0 and exterior to each lk, k = 1, ..., n, then

ˆ
l0

f(z)dz =
n∑
k=1

ˆ
lk

f(z)dz.

Proof. The theorem follows by dividing the domain into finitely many simply connected do-
mains.

Corollary 10.12. Let γ1 and γ2 be two simple closed curves with counterclockwise orientation.
And γ1 lies in the interior enclosed by γ2. If f is analytic on the closed set consisting of γ1, γ2

and all points between them, then

ˆ
γ1

f(z)dz =

ˆ
γ2

f(z)dz.

Example 10.13. Let γ be a simple closed curve with counterclockwise orientation surrounding
the origin. In order to evaluate the integral

ˆ
γ

dz

z
,

we notice that, as in Example 9.10,

ˆ
C

dz

z
= 2πi

for any circle C centered at the origin with counterclockwise orientation. Thus, by Corollary
10.12,

ˆ
γ

dz

z
= 2πi.
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11 Cauchy Integral Formula

Theorem 11.1 (Cauchy integral formula). Let Ω is the open set enclosed by a simple closed
curve γ with counterclockwise orientation. If f is analytic on Ω, the closure of Ω, then

f(z0) =
1

2πi

ˆ
γ

f(z)

z − z0

dz

for all z0 ∈ Ω.

Proof. For z0 ∈ Ω, let Cρ be the circle centered at z0 with radius ρ sufficiently small such that
Cρ ⊂ Ω. We assume that Cρ is counterclockwise oriented. By Corollary 10.12,

ˆ
γ

f(z)

z − z0

dz =

ˆ
Cρ

f(z)

z − z0

dz.

Therefore, we have
ˆ
γ

f(z)

z − z0

dz − f(z0)

ˆ
Cρ

1

z − z0

dz =

ˆ
Cρ

f(z)− f(z0)

z − z0

dz. (11.1)

As in Example 9.10, ˆ
Cρ

1

z − z0

dz = 2πi.

Then (11.1) becomes
ˆ
γ

f(z)

z − z0

dz − 2πif(z0) =

ˆ
Cρ

f(z)− f(z0)

z − z0

dz.

For the right-hand side on the last equality, we have∣∣∣∣∣
ˆ
Cρ

f(z)− f(z0)

z − z0

dz

∣∣∣∣∣ ≤ max
z∈Ω

∣∣∣∣f(z)− f(z0)

z − z0

∣∣∣∣ · 2πρ −→ 0 as ρ→ 0.

Here max
z∈Ω

∣∣∣∣f(z)− f(z0)

z − z0

∣∣∣∣ is finite since f is analytic on Ω. Since ρ is arbitrary, we conclude that

ˆ
γ

f(z)

z − z0

dz − 2πif(z0) = 0.

The theorem then follows.

Example 11.2. Let f(z) =
cos z

z2 + 9
. To evaluate the integral

ˆ
γ

cos z

z (z2 + 9)
dz,

where γ is the unit circle centered at the origin with counterclockwise orientation, we have
ˆ
γ

cos z

z (z2 + 9)
dz =

ˆ
γ

f(z)

z − 0
dz = 2πif(0) =

2πi

9
.
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Theorem 11.3 (generalized Cauchy integral formula). Let Ω is the open set enclosed by a
simple closed curve γ with counterclockwise orientation. If f is analytic on some open set
containing Ω, the closure of Ω, then f is differentiable of all orders in Ω. Moreover,

f (n)(z0) =
n!

2πi

ˆ
γ

f(z)

(z − z0)n+1
dz

for all z0 ∈ Ω, n ∈ N ∪ {0}.

Proof. The proof is by induction on n. n = 0 is proved in Theorem 11.1. For n ∈ N, suppose
that f is n− 1 times differentiable in Ω with

f (n−1)(z0) =
(n− 1)!

2πi

ˆ
γ

f(z)

(z − z0)n
dz

for all z0 ∈ Ω. Then for each z0 ∈ Ω, |h| small enough such that z0 + h ∈ Ω, we have

f (n−1)(z0 + h)− f (n−1)(z0)

h
=

(n− 1)!

2πi

ˆ
γ

f(z)
1

h

[
1

(z − z0 − h)n
− 1

(z − z0)n

]
dz.

Notice that

1

(z − z0 − h)n
− 1

(z − z0)n
=

[
1

z − z0 − h
− 1

z − z0

] n−1∑
k=0

1

(z − z0 − h)k(z − z0)n−k

=
h

(z − z0 − h)(z − z0)

n−1∑
k=0

1

(z − z0 − h)k(z − z0)n−k
.

Therefore,

lim
h→0

f (n−1)(z0 + h)− f (n−1)(z0)

h
=

(n− 1)!

2πi

ˆ
γ

f(z)
1

(z − z0)2

n

(z − z0)n−1
dz

=
n!

2πi

ˆ
γ

f(z)

(z − z0)n+1
dz,

which completes the proof.

Example 11.4. Let f(z) = e2z. To evaluate the integral

ˆ
γ

e2z

z4
dz,

where γ is the unit circle centered at the origin with counterclockwise orientation, we have

ˆ
γ

e2z

z4
dz =

ˆ
γ

f(z)

(z − 0)4
dz =

2πi

3!
f (3)(0) =

8πi

3
.

Corollary 11.5. If f is differentiable on an open set Ω, then f is differentiable of all orders
on Ω. As a consequence, the real and imaginary parts of f are continuously differentiable of all
orders.
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Proof. Given z0 ∈ Ω, there is a disc B centered at z0 such that the closure of B is contained in
Ω. Then we can apply Theorem 11.3 to conclude that f is differentiable of all orders in B.

Remark 11.6. Corollary 11.5 is used in the proof of Theorem 7.4.

Theorem 11.7 (Morera’s theorem). Let f is continuous on an open connected set Ω. If
ˆ
γ

f(z)dz = 0

for all closed curves in Ω, then f is differentiable on Ω.

Proof. By Theorem 9.5, f has an antiderivative F . By Corollary 11.5, F is differentiable of all
orders on Ω. Hence, so is f .

Corollary 11.8 (Cauchy’s inequality). Suppose f is differentiable on an open set containing
the closure of a disc B centered at z0 with radius R. Let γ be the circle centered at z0 with
radius R, counterclockwise oriented, then∣∣f (n)(z0)

∣∣ ≤ n! maxγ |f(z)|
Rn

for all n ∈ N ∪ {0}.

Proof. By Cauchy integral formula,∣∣f (n)(z0)
∣∣ =

∣∣∣∣ n!

2πi

ˆ
γ

f(z)

(z − z0)n+1
dz

∣∣∣∣
≤ n!

2π
· maxγ |f(z)|

Rn+1
· 2πR

=
n! maxγ |f(z)|

Rn
.

12 Liouville’s Theorem and the Fundamental Theorem

of Algebra

Theorem 12.1 (Liouville’s theorem). If f is entire and bounded, then f is constant.

Proof. Since f is bounded, there is a positive constant M such that

|f(z)| ≤M

for all z ∈ C. By Cauchy’s inequality,

|f ′(z)| ≤ M

R

for any z ∈ C and R > 0. Since R is arbitrary, we obtain that

f ′(z) = 0 on C.

As a consequence, f is a constant on C.
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Theorem 12.2 (fundamental theorem of algebra). Any non-constant polynomial has at least
one root.

Proof. Suppose on the contrary that there is a polynomial

P (z) = a0 + a1z + ...+ anz
n, n ≥ 1, an 6= 0,

such that P (z) 6= 0 for all z ∈ C. Then 1/P (z) is entire. Now, we claim that 1/P (z) is bounded.
Let

w(z) =
a0

zn
+

a1

zn−1
+ ...+

an−1

z
, z 6= 0.

By the triangle inequality,

|w(z)| ≤ |a0|
|z|n

+
|a1|
|z|n−1

+ ...+
|an−1|
|z|

.

By choosing R > 0 sufficiently large, we have

|ak|
Rn−k ≤

|an|
2n

for k = 0, 1, ..., n− 1,

which gives

|w| ≤ |an|
2

for all |z| ≥ R.

Consequently,

|an + w| ≥ |an| − |w| ≥
|an|
2

for all |z| ≥ R.

Then we have

|P (z)| = |an + w||z|n ≥ |an|
2
Rn for all |z| ≥ R,

and hence ∣∣∣∣ 1

P (z)

∣∣∣∣ ≤ 2

|an|Rn
for all |z| ≥ R. (12.1)

Since 1/P (z) is continuous on the set {|z| ≤ R}, it is bounded on {|z| ≤ R}. Therefore,
1/P (z) is entire and bounded. By Liouville’s theorem, 1/P (z) is a constant on C, which leads
a contradiction.

Corollary 12.3. A polynomial P of order n, n ≥ 1 has precisely n roots in C. P can be
expressed as

P (z) = c(z − z1)(z − z2)...(z − zn),

where c, z1, ..., zn are constants with c 6= 0.
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Proof. For

P (z) = a0 + a1z + ...+ anz
n,

by Theorem 12.2, there is a root z1 of P . We have

P (z) = P ((z − z1) + z1)

= a0 + a1((z − z1) + z1) + ...+ an((z − z1) + z1)n

= b1(z − z1) + b2(z − z1)2 + ...+ bn(z − z1)n

for some b1, ..., bn ∈ C, and bn = an. Thus,

P (z) = (z − z1)
[
b1 + b2(z − z1) + ...+ bn(z − z1)n−1

]
= (z − z1)Q(z),

where Q is a polynomial of order n − 1. By Theorem 12.2 again, there is a root z2 of Q. We
then prove the corollary inductively.

13 Maximum Modulus Principle

Theorem 13.1 (maximum modulus principle). If f is non-constant and analytic on an open
connected set Ω, then there is no point z0 ∈ Ω such that |f(z)| ≤ |f(z0)| for all z ∈ Ω.

Lemma 13.2. If |f(z)| ≤ |f(z0)| for all z ∈ BR(z0), then f(z) = f(z0) for all z ∈ BR(z0).

Proof. Let Cρ be the circle centered at z0 with radius ρ ∈ (0, R) and counterclockwise oriented.
By Cauchy integral formula,

f(z0) =
1

2πi

ˆ
Cρ

f(z)

z − z0

dz

for all ρ ∈ (0, R). Then

|f(z0)| ≤ 1

2π
max
Cρ

|f(z)|
|z − z0|

· 2πρ ≤ 1

2π
· |f(z0)|

ρ
· 2πρ = |f(z0)|

for all ρ ∈ (0, R). Thus both the inequalities above are equalities, which implies that

|f(z)| = |f(z0)| on Cρ.

Since ρ ∈ (0, R) is arbitrary, |f(z)| = |f(z0)| on BR(z0). By Example 6.20, f is a constant on
BR(z0), which completes the proof.

Proof of Theorem 13.1. Suppose on the contrary that there is z0 ∈ Ω such that |f(z)| ≤ |f(z0)|
for all z ∈ Ω. For any w ∈ Ω, there is a polygonal line L connecting z0 and w. Let 0 <
δ < dist(L, ∂Ω), L can be covered by finitely many discs Bδ(zk), zk ∈ L, k = 0, 1, ..., N , and
w = zN . Moreover, zk ∈ Bδ(zk−1) for each k = 1, 2, ..., N . By Lemma 13.2, f is a constant on
Bδ(z0). Thus f(z1) = f(z0), and hence |f(z)| ≤ |f(z1)| on Bδ(z1). Continue in this manner, we
conclude that f(w) = f(z0). That is, f is constant on Ω, which leads a contradiction.

Remark 13.3.
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(i) Under the assumptions of Theorem 13.1, if f is continuous on the closure of Ω, then the
maximum value of |f(z)| on the closure of Ω must occur on the boundary of Ω.

(ii) Applying Theorem 13.1 to 1/f(z), the minimum of |f(z)| cannot be obtained at an interior
point of Ω provided that f(z) 6= 0 for all z ∈ Ω.

(iii) Applying Theorem 13.1 to functions ef(z) and e−if(z), similar properties hold for the real
and imaginary parts of f as in Theorem 13.1.

Example 13.4. We can use the maximum modulus principle to prove the fundamental theorem
of algebra. Suppose that P is a non-constant polynomial of order n and has no root on C. Then
1/P (z) is analytic on BR(0) for all R > 0. As in (12.1), we have∣∣∣∣ 1

P (z)

∣∣∣∣ ≤ 2

|an|Rn
on the circle {z : |z| = R}

provided R sufficiently large. By the maximum modulus principle,∣∣∣∣ 1

P (z)

∣∣∣∣ ≤ 2

|an|Rn
on BR(0).

Taking R→∞, we conclude that
1

P (z)
= 0 on C, a contradiction.

Example 13.5. Let f(z) = (z + 1)2 be defined on the closed triangle T with vertices z = 0,
z = 2 and z = i. Notice that |f(z)| can be interpreted as the square of the distance between −1
and z ∈ T . The maximum and minimum values of |f(z)| occur at z = 2 and z = 0, respectively.

14 Taylor Series and Laurent Series

Definition 14.1. For zn ∈ C, n ∈ N ∪ {0}, the series
∞∑
n=0

zn converges to the sum z if the

partial sum

N∑
n=0

zn −→ z as N →∞.

If it does not converge, we say that it diverges. And we say that the series
∞∑
n=0

zn converges

absolutely if the series
∞∑
n=0

|zn| converges.

Proposition 14.2. Absolute convergence implies convergence.

Proposition 14.3. Given a power series
∞∑
n=0

anz
n, there exists 0 ≤ R ≤ ∞ such that the series

converges absolutely if |z| < R and diverges if |z| > R. Moreover, R is given by

R =

(
lim sup
n→∞

|an|1/n
)−1

.
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Definition 14.4. R given in Proposition 14.3 is called the radius of convergence of the power
series. And BR(0) is called the disc of convergence.

Proof. For |z| < R, there is ε > 0 small enough such that(
R−1 + ε

)
|z| = r < 1.

By the definition of R,

|an|1/n ≤ R−1 + ε

for all n large, which gives

|an||z|n ≤
(
R−1 + ε

)n |z|n = rn.

By a comparison with the series
∞∑
n=0

rn, the series
∞∑
n=0

anz
n converges absolutely.

If |z| > R,

lim sup
n→∞

|anzn| ≥ lim sup
n→∞

R−n|z|n =∞.

Thus, the series cannot converge for |z| > R.

Theorem 14.5. A function defined by a power series

f(z) =
∞∑
n=0

anz
n, an ∈ C,

with positive radius of convergence, is differentiable on its disc of convergence. And its derivative
can be represented by the power series

f ′(z) =
∞∑
n=1

nanz
n,

which has the same radius of convergence as f .

Proof. Let

g(z) =
∞∑
n=1

nanz
n.

Since

lim sup
n→∞

|an|1/n = lim sup
n→∞

|nan|1/n,

g has the same radius of convergence as f . Let R be the radius of convergence of f , and divide
f into

f(z) = SN(z) +RN(z),
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where

SN(z) =
N∑
n=0

anz
n and RN(z) =

∞∑
n=N+1

anz
n.

For |z0| < r < R, |h| sufficiently small such that |z0 + h| < r, we have

f(z0 + h)− f(z0)

h
− g(z0)

=

(
SN(z0 + h)− SN(z0)

h
− S ′N(z0)

)
+ (S ′N(z0)− g(z0)) +

(
RN(z0 + h)−RN(z0)

h

)
Given ε > 0, since∣∣∣∣RN(z0 + h)−RN(z0)

h

∣∣∣∣ ≤ ∞∑
n=N+1

|an|
∣∣∣∣(z0 + h)n − zn0

h

∣∣∣∣ ≤ ∞∑
n=N+1

|an|nrn−1,

there is N1 ∈ N sufficiently large such that∣∣∣∣RN(z0 + h)−RN(z0)

h

∣∣∣∣ < ε

3

for all h with |z0 + h| < r and N ≥ N1. Also, since

lim
N→∞

S ′N(z0) = g(z0),

there is N2 ∈ N sufficiently large such that

|S ′N(z0)− g(z0)| < ε

3

for all h with |z0 + h| < r and N ≥ N2. Now, we fix N ≥ max{N1, N2}, there is δ > 0 such
that ∣∣∣∣SN(z0 + h)− SN(z0)

h
− S ′N(z0)

∣∣∣∣ < ε

3

provided |h| < δ. Therefore, ∣∣∣∣f(z0 + h)− f(z0)

h
− g(z0)

∣∣∣∣ < ε

provided |h| < δ, that is,

f ′(z0) = g(z0).

Corollary 14.6. A function defined by a power series with positive radius of convergence is
infinitely many times differentiable on its disc of convergence. And all the higher derivatives
can be represented by the power series obtained by termwise differentiation and have the same
radius of convergence as f .
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Theorem 14.7. Suppose that f is analytic on a disc BR(z0). Then f can be represented as

f(z) =
∞∑
n=0

an(z − z0)n, z ∈ BR(z0), (14.1)

where

an =
f (n)(z0)

n!
, n ∈ N ∪ {0}.

Remark 14.8.

(i) (14.1) is called the Taylor series of f about z0. In particular, if z0 = 0, it is called the
Maclaurin series of f .

(ii) The coefficients of Taylor series are unique.

Proof. Without loss of generality, we may assume that z0 = 0. By Cauchy integral formula, for
any z ∈ BR(0),

f(z) =
1

2πi

ˆ
γ

f(w)

w − z
dw, (14.2)

where γ is the circle centered at 0 with radius
|z|+R

2
and counterclockwise orientation. Notice

that

1

w − z
=

1

w
· 1

1− z/w
=

1

w

[
N∑
n=0

( z
w

)n
+

1

1− z/w

( z
w

)N+1
]
.

Thus, (14.2) becomes

f(z) =
1

2πi

ˆ
γ

f(w)

w

N∑
n=0

( z
w

)n
dw +

1

2πi

ˆ
γ

f(w)

w

1

1− z/w

( z
w

)N+1

dw

=
N∑
n=0

zn

2πi

ˆ
γ

f(w)

wn+1
dw +

zN+1

2πi

ˆ
γ

f(w)

(w − z)wN+1
dw. (14.3)

By the generalized Cauchy integral formula,

1

2πi

ˆ
γ

f(w)

wn+1
dw =

f (n)(0)

n!
, n = 0, 1, ..., N.

Thus, (14.3) reduces to

f(z) =
N∑
n=0

f (n)(0)

n!
zn +

zN+1

2πi

ˆ
γ

f(w)

(w − z)wN+1
dw.

Now, let M = maxγ |f |, then∣∣∣∣zN+1

2πi

ˆ
γ

f(w)

(w − z)wN+1
dw

∣∣∣∣ ≤ |z|N+1

2π
· M

R− |z|
2

(
R + |z|

2

)N+1
· 2π

(
R + |z|

2

)

= M · R + |z|
R− |z|

(
2|z|

R + |z|

)N+1

−→ 0 as N →∞.

Therefore, we complete the proof.
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Example 14.9. Let f(z) =
1

1− z
. We have

f (n)(z) =
n!

(1− z)n+1
, z 6= 1, n ∈ N ∪ {0}.

Thus,

1

1− z
=
∞∑
n=0

zn on B1(0).

As for the Taylor series of f about i, we have

1

1− z
=
∞∑
n=0

(z − i)n

(1− i)n+1
on B√2(i).

Example 14.10. Let f(z) = ez. We have

f (n)(z) = ez on C, n ∈ N ∪ {0}.

Thus,

ez =
∞∑
n=0

zn

n!
on C.

We can use the Taylor series of ez to show that

e2z =
∞∑
n=0

2nzn

n!
on C.

Moreover,

z3e2z =
∞∑
n=0

2nzn+3

n!
on C.

Example 14.11. Let f(z) = sin z =
eiz − e−iz

2i
. We have

f (n)(z) =
ineiz − (−i)ne−iz

2i
on C, n ∈ N ∪ {0}.

Thus,

sin z =
∞∑
n=0

in − (−i)n

2i
· z

n

n!
=
∞∑
k=0

i2k

(2k + 1)!
z2k+1 =

∞∑
k=0

(−1)k

(2k + 1)!
z2k+1 on C. (14.4)

Example 14.12. Let f(z) = cos z =
eiz + e−iz

2
. We have

f (n)(z) =
ineiz + (−i)ne−iz

2
on C, n ∈ N ∪ {0}.
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Thus,

cos z =
∞∑
n=0

in + (−i)n

2
· z

n

n!
=
∞∑
k=0

i2k

(2k)!
z2k =

∞∑
k=0

(−1)k

(2k)!
z2k on C.

The Taylor series of cos z can also be obtained by differentiating (14.4) term by term

cos z =
∞∑
k=0

(−1)k

(2k + 1)!
· (2k + 1)z2k =

∞∑
k=0

(−1)k

(2k)!
z2k on C.

Example 14.13. Let f(z) = sinh z =
ez − e−z

2
. We have

f (n)(z) =
ez − (−1)ne−z

2
on C, n ∈ N ∪ {0}.

Thus,

sinh z =
∞∑
n=0

1− (−1)n

2
· z

n

n!
=
∞∑
k=0

z2k+1

(2k + 1)!
on C.

Example 14.14. Let f(z) = cosh z =
ez + e−z

2
. We have

f (n)(z) =
ez + (−1)ne−z

2
on C, n ∈ N ∪ {0}.

Thus,

cosh z =
∞∑
n=0

1 + (−1)n

2
· z

n

n!
=
∞∑
k=0

z2k

(2k)!
on C.

Theorem 14.15. Suppose that f is analytic on an annulus BR2(z0)\BR1(z0). Then f can be
represented as

f(z) =
∞∑

n=−∞

cn(z − z0)n, z ∈ BR2(z0)\BR1(z0), (14.5)

where

cn =
1

2πi

ˆ
γ

f(w)

(w − z0)n+1
dw

with any simple closed curve γ in BR2(z0)\BR1(z0) around z0 with counterclockwise orientation.

Remark 14.16.

(i) (14.5) is called the Laurent series of f about z0.

(ii) If f is also analytic on BR1(z0), then the Taylor series of f and the Laurent series of f
about z0 agree with each other. In fact, cn = 0 for all n < 0 by Cauchy-Goursat theorem.
Moreover, by Cauchy integral formula, cn = an for n ∈ N ∪ {0}, where an are the Taylor
coefficients of f .
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(iii) The coefficients of Laurent series are unique. Suppose that

∞∑
n=−∞

cn(z − z0)n =
∞∑

n=−∞

c̃n(z − z0)n on BR2(z0)\BR1(z0).

Then, for m ∈ Z,

∞∑
n=−∞

cn(z − z0)n−m−1 =
∞∑

n=−∞

c̃n(z − z0)n−m−1.

Since

ˆ
γ

(z − z0)n−m−1 =

{
2πi if n = m,

0 if n 6= m,

for any simple closed curve γ around z0 with counterclockwise orientation, then we con-
clude

cm = c̃m, m ∈ Z.

Here the interchange of orders of summation and multiplication or integration can be
justified by absolute convergence.

Proof. Without loss of generality, we may assume that z0 = 0. For z ∈ BR2(0)\BR1(0), let γ1

and γ2 be the circles centered at 0 with radius r1 and r2, respectively, such that R1 < r1 <
|z| < r2 < R2. There is ε > 0 sufficiently small such that the closed disk Bε(z) is contained in
the annulus Br2(0)\Br1(0). Let γ be the boundary of Bε(z). We assume that γ, γ1 and γ2 are
all counterclockwise oriented. By Theorem 10.11,

ˆ
γ2

f(w)

w − z
dw −

ˆ
γ1

f(w)

w − z
dw −

ˆ
γ

f(w)

w − z
dw = 0. (14.6)

By the Cauchy integral formula,
ˆ
γ

f(w)

w − z
dw = 2πif(z).

Put this into (14.6), we obtain

f(z) =
1

2πi

ˆ
γ2

f(w)

w − z
dw +

1

2πi

ˆ
γ1

f(w)

z − w
dw. (14.7)

Notice that

1

w − z
=

1

w
· 1

1− z/w
=

1

w

[
N∑
n=0

( z
w

)n
+

1

1− z/w

( z
w

)N+1
]

for w ∈ γ2. Similarly,

1

z − w
=

1

z

[
N∑
n=0

(w
z

)n
+

1

1− w/z

(w
z

)N+1
]

51



for w ∈ γ1. Then (14.7) becomes

f(z) =
N∑
n=0

zn

2πi

ˆ
γ2

f(w)

wn+1
dw +

zN+1

2πi

ˆ
γ2

f(w)

(w − z)wN+1
dw

+
N∑
n=0

z−(n+1)

2πi

ˆ
γ1

f(w)

w−n
dw +

z−(N+1)

2πi

ˆ
γ1

f(w)

(z − w)w−(N+1)
dw.

Now, let M = maxγ1∪γ2 |f |. Then∣∣∣∣zN+1

2πi

ˆ
γ2

f(w)

(w − z)wN+1
dw

∣∣∣∣ ≤ |z|N+1

2π
· M

(r2 − |z|)r2
N+1
· 2πr2

= M · r2

r2 − |z|

(
|z|
r2

)N+1

−→ 0 as N →∞,

and ∣∣∣∣z−(N+1)

2πi

ˆ
γ1

f(w)

(z − w)w−(N+1)
dw

∣∣∣∣ ≤ |z|−(N+1)

2π
· M

(|z| − r1)r1
−(N+1)

· 2πr1

= M · r1

|z| − r1

(
r1

|z|

)N+1

−→ 0 as N →∞.

Therefore, we complete the proof.

Example 14.17. Let f(z) =
1

z(1 + z2)
. Since

1

1 + z2
=
∞∑
n=0

(−1)nz2n, |z| < 1.

Therefore,

1

z(1 + z2)
=
∞∑
n=0

(−1)nz2n−1, 0 < |z| < 1,

is the Laurent series of f .

Example 14.18. Let f(z) =
z + 1

z − 1
. For |z| < 1,

z + 1

z − 1
= −z · 1

1− z
− 1

1− z
= −z

∞∑
n=0

zn −
∞∑
n=0

zn = −1− 2
∞∑
n=1

zn,

which is the Taylor series of f . And for |z| > 1,

z + 1

z − 1
=

1 +
1

z

1− 1

z

=

(
1 +

1

z

) ∞∑
n=0

1

zn
= 1 + 2

∞∑
n=1

1

zn
,

which is the Laurent series of f .
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Example 14.19. Notice that

e1/z =
∞∑
n=0

z−n

n!
,

which is the Laurent series of e1/z. Let γ be the circle centered at 0 with radius R, counter-
clockwise oriented. Then the coefficients of Laurent series

c−n =
1

2πi

ˆ
γ

e1/z

z−n+1
dz =

1

n!
, n ∈ N ∪ {0}.

It can be used to evaluate the integrals
ˆ
γ

e1/z

z−n+1
dz =

2πi

n!
, n ∈ N ∪ {0}.

For the sake of completion, we list some results used in this section as follows.

Proposition 14.20. If

f(z) =
∞∑
n=0

an(z − z0)n, |z − z0| < R =

(
lim sup
n→∞

|an|1/n
)−1

,

and g is a bounded and continuous function on Ω ⊂ BR(z0), then

f(z)g(z) =
∞∑
n=0

ang(z)(z − z0)n on Ω.

Moreover, if γ is a curve in Ω, then

ˆ
γ

f(z)g(z)dz =
∞∑
n=0

ˆ
γ

ang(z)(z − z0)ndz.

Lemma 14.21. If R0 < R, the series

∞∑
n=0

an(z − z0)n

absolutely converges uniformly on BR0(z0).

Proof. The proof is similar to the proof of Proposition 14.3. There is ε > 0 small enough such
that (

R−1 + ε
)
R0 = r < 1.

By the definition of R, for any z ∈ BR0(z0),

|an||z − z0|n ≤
(
R−1 + ε

)n
Rn

0 = rn,

which gives

∞∑
n=N+1

|an||z − z0|n ≤
∞∑

n=N+1

rn ≤ rN+1

1− r
.
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Proof of Proposition 14.20. For each z ∈ BR(z0),
∞∑
n=0

an(z − z0)n absolutely converges. In

particular, for z ∈ Ω,

∞∑
n=N+1

|ang(z)(z − z0)n| ≤ sup
Ω
|g| ·

∞∑
n=N+1

|an||z − z0|n −→ 0

as N →∞. Since γ ∈ Ω ⊂ BR(z0), there is R0 < R such that γ ∈ BR0(z0). Thus,
∞∑
n=0

an(z−z0)n

absolutely converges uniformly on γ. We have∣∣∣∣∣
ˆ
γ

g(z)
∞∑

n=N+1

an(z − z0)ndz

∣∣∣∣∣ ≤ sup
γ
|g| · sup

γ

∣∣∣∣∣
∞∑

n=N+1

an(z − z0)n

∣∣∣∣∣ · length(γ) −→ 0

as N →∞.

Corollary 14.22. If

f(z) =
∞∑

n=−∞

cn(z − z0)n, R1 < |z − z0| < R2,

where

R1 = lim sup
n→∞

|c−n|1/n, and R2 =

(
lim sup
n→∞

|cn|1/n
)−1

,

and g is a bounded and continuous function on Ω ⊂ {z ∈ C : R1 < |z| < R2}, then

f(z)g(z) =
∞∑

n=−∞

cng(z)(z − z0)n on Ω.

Moreover, if γ is a curve in Ω, then
ˆ
γ

f(z)g(z)dz =
∞∑

n=−∞

ˆ
γ

cng(z)(z − z0)ndz.

15 Isolated Singularities

In this section, we assume that f is analytic on a punctured disc {z ∈ C : 0 < |z − z0| < R}
for some R > 0. Since f is analytic on annulus BR(z0)\Br(z0) for any r ∈ (0, R), f can be
represented as Laurent series

f(z) =
∞∑

n=−∞

cn(z − z0)n, r < |z − z0| < R,

where cn ∈ C, n ∈ Z. By the uniqueness of the coefficients of Laurent series, cn’s are indepen-
dent of r, and hence

f(z) =
∞∑

n=−∞

cn(z − z0)n, 0 < |z − z0| < R. (15.1)

There are three types of singularities: removable singularities, poles, and essential singularities.
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Definition 15.1. Let f be analytic on a punctured disc {z ∈ C : 0 < |z − z0| < R} for some
R > 0 with representation (15.1).

(i) If cn = 0 for all n < 0, then z0 is called a removable singularity.

(ii) If there is m ∈ N such that c−m 6= 0 and cn = 0 for all n < −m, then z0 is called a pole
of order m.

(iii) If there are infinitely many cn 6= 0 with n < 0, then z0 is called an essential singularity.

Example 15.2.

(i) Let f(z) =
1

z(1 + z2)
be defined on B1(0)\{0}, then 0 is a pole of f .

(ii) Let f(z) = e1/z be defined on B1(0)\{0}, then 0 is an essential singularity of f .

Proposition 15.3. If z0 is a removable singularity of f , by defining

g(z) =

{
f(z), 0 < |z − z0| < R,

c0, z = z0,

then the function g is analytic on BR(z0).

Proof. Notice that

g(z) =
∞∑
n=0

cn(z − z0)n

has the radius of convergence not less than R, otherwise f cannot be defined on BR(z0)\{z0}.
By Theorem 14.5, g is analytic on BR(z0).

Proposition 15.4. If f is bounded and analytic on BR(z0)\{z0}. Then z0 is a removable
singularity of f .

Proof. Notice that f can be represented as the Laurent series (15.1). In fact, by Theorem 14.15,

cn =
1

2πi

ˆ
γρ

f(w)

(w − z0)n+1
dw, n ∈ Z,

where γρ is the circle centered at z0 with radius ρ and counterclockwise orientation, for any
ρ > 0. For each n < 0,

|cn| ≤
1

2π
· sup |f |
ρn+1

· 2πρ =
sup |f |
ρn

.

Since ρ is arbitrary, we conclude that cn = 0 for all n < 0. That is, z0 is a removable
singularity.

Proposition 15.5. If z0 is a pole of f , then

lim
z→z0
|f(z)| =∞.
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Proof. If z0 is a pole of order m, m ∈ N, we have

f(z) =
∞∑

n=−m

cn(z − z0)n, 0 < |z − z0| < R,

where c−m 6= 0. By letting

g(z) = (z − z0)mf(z) =
∞∑
n=0

cn−m(z − z0)n,

which is analytic on BR(z0)\{z0}, then z0 is a removable singularity of g with

lim
z→z0

g(z) = c−m 6= 0.

Therefore,

|f(z)| = |g(z)|
|z − z0|−m

−→∞ as z → z0.

Proposition 15.6. If z0 is an essential singularity of f , then for any c ∈ C, there is a sequence
zk → z0 such that

|f(zk)− c| −→ 0 as k →∞.

Proof. Suppose on the contrary that there are c ∈ C, ε0 > 0 and δ0 ∈ (0, R) such that

|f(z)− c| > ε0 for all z ∈ Bδ0(z0)\{z0}.

We define

g(z) =
1

f(z)− c
on Bδ0(z0)\{z0}.

Then g is analytic and

|g(z)| ≤ 1

|f(z)− c|
≤ 1

ε0

on Bδ0(z0)\{z0}.

By Proposition 15.4, z0 is a removable singularity of g. That is,

g(z) =
∞∑
n=0

an(z − z0)n on Bδ0(z0)\{z0}

for some an ∈ C, n ∈ N ∪ {0}. If a0 6= 0, we have

lim
z→z0

g(z) = a0 6= 0,

which implies that

lim
z→z0

f(z) = lim
z→z0

1

g(z)
+ c =

1

a0

+ c.
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Therefore, f is bounded on Bσ(z0)\{z0} for some σ > 0. By Proposition 15.4, z0 is a removable
singularity of f , a contradiction. We must have a0 = 0. Let N be the least number (if it exists)
such that

a0 = a1 = ... = aN−1 = 0 and aN 6= 0.

Define

h(z) =
∞∑
n=0

an+N(z − z0)n on Bδ0(z0),

which is analytic with h(z0) = aN 6= 0. Then

g(z) = (z − z0)N
∞∑
n=N

an(z − z0)n−N = (z − z0)Nh(z) on Bδ0(z0)\{z0}.

Moreover, on Bδ0(z0)\{z0},

f(z) =
1

g(z)
+ c =

1

h(z)(z − z0)N
+ c,

which implies that z0 is a pole of order N of f , again a contradiction. As a consequence, an = 0
for all n ∈ N ∪ {0}, which implies that

g(z) = 0 on Bδ0(z0)\{z0}.
It is still impossible. We then complete the proof.

Theorem 15.7 (Picard’s theorem). If z0 is an essential singularity of f , then on any punctured
neighborhood of z0, f takes all complex values, with at most one exception, infinitely often.

Example 15.8. Let f(z) = e1/z. Then 0 is an essential singularity of f . The value 0 is the
only exceptional value which cannot be taken by f on any punctured neighborhood of the point
0. For any non-zero complex value c = ρeiθ, we solve the equation

e1/z = e
1
|z|2

(x−iy)
= ρeiθ = c, z = x+ yi. (15.2)

We have

ex/|z|
2

= ρ and e−iy/|z|
2

= eiθ.

That is,
x

|z|2
= ln ρ

and
y

|z|2
= −θ + 2nπ, n ∈ Z.

The last two equations imply

1

|z|2
= (ln ρ)2 + (−θ + 2nπ)2 . (15.3)

Thus, we know that for each n ∈ Z, zn = xn + yni is a solution of (15.2), where

xn =
ln ρ

(ln ρ)2 + (−θ + 2nπ)2 and yn =
−θ + 2nπ

(ln ρ)2 + (−θ + 2nπ)2 .

By (15.3), zn → 0 as n → ∞. That is, c can be taken by f infinitely many times on any
punctured neighborhood of 0.
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16 Isolation of Points in Preimage

Definition 16.1. Let f be defined on an open connected set Ω. The image of a set X ⊂ Ω
under f is defined by

f(X) = {w ∈ C : w = f(z) for some z ∈ X} .

The preimage of a set Y ⊂ f(Ω) under f is defined by

f−1(Y ) = {z ∈ C : f(z) = w for some w ∈ Y } .

If Y = {c}, we may write f−1(Y ) = f−1(c) for simplicity.

Proposition 16.2. If f is non-constant, analytic, and f(z0) = c for some z0 ∈ Ω, then there
is ε > 0 such that

Bε(z0) ∩ f−1(c) = {z0}.

Proof. Near z0, f has the Taylor series

f(z) = f(z0) +
∞∑
n=1

an(z − z0)n = c+
∞∑
n=1

an(z − z0)n.

Since f is non-constant, there is a smallest N ∈ N such that aN 6= 0. And we can rewrite above
representation as

f(z) = c+
∞∑
n=N

an(z − z0)n = c+ (z − z0)Ng(z),

where

g(z) =
∞∑
n=0

aN+n(z − z0)n.

Since aN 6= 0, there is ε > 0 such that

g(z) 6= 0 on Bε(z0),

which implies that

f(z) 6= c on Bε(z0)\{z0}.

Theorem 16.3. Suppose that f is analytic on an open connected set Ω. If f(zn) = 0, where
zn ∈ Ω is a sequence of distinct points with a limit point in Ω, then f is identical to 0.

Proof. By taking a subsequence, still indexed by n, z0 = limn→∞ zn. By the continuity of f ,
f(z0) = 0. Suppose that f is not identical to 0, by Proposition 16.2, there is ε > 0 such that

Bε(z0) ∩ f−1(0) = {z0},

a contradiction.
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Corollary 16.4. Suppose that f and g are analytic on an open connected set Ω. If f(zn) =
g(zn), where zn ∈ Ω is a sequence of distinct points with a limit point in Ω, then f is identical
to g.

Remark 16.5. If f and F are analytic on Ω′ and Ω, respectively, where Ω′ ⊂ Ω. If f(z) = F (z)
on Ω′, then F is an analytic continuation of f . Corollary 16.4 guarantees that there can be only
one such analytic continuation. In particular, suppose that f1 and f2 are analytic on Ω1 and
Ω2, respectively, and f1 = f2 on Ω1 ∩ Ω2 6= φ. Then the function

g(z) =

{
f1(z) if z ∈ Ω1\Ω2,

f2(z) if z ∈ Ω2,

on Ω1 ∪ Ω2 is an analytic continuation of both f1 and f2.

Theorem 16.6 (reflection principle). Let Ω be an open connected set which is symmetric with
respect to the real axis. Ω = Ω+ ∪ I ∪Ω−, where Ω+ is the upper half part, Ω− is the lower half
part, and I = Ω ∩ R. If f is analytic on Ω, then

f(z) = f(z), z ∈ Ω, (16.1)

if and only if f is real-valued on I.

Proof. Suppose that (16.1) holds. For x ∈ I, we have

f(x) = f(x) = f(x),

which gives f(x) ∈ R.
On the other hand, if f is real-valued on I, we can define

g(z) =

f(z) if z ∈ Ω+ ∪ I,

f(z) if z ∈ Ω−.

Then g is analytic on Ω+. For each z0 ∈ Ω−, we have z0 ∈ Ω+, and hence

g(z) =
∞∑
n=0

an(z − z0)n

in a neighborhood of z0 in Ω+. By the definition of g,

g(z) =
∞∑
n=0

an(z − z0)n

in a neighborhood of z0 in Ω−. That is, g is analytic on Ω−. And for each x0 ∈ I, we have

f(z) =
∞∑
n=0

bn(z − x0)n

in a neighborhood of x0, say Bδ(x0). In addition, bn’s are all real since f takes real values on
I. Hence,

g(z) =
∞∑
n=0

bn(z − x0)n on Bδ(x0) ∩
(
Ω+ ∪ I

)
.
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Moreover, for z ∈ Bδ(x0) ∩ Ω−,

g(z) =
∞∑
n=0

bn(z − x0)n =
∞∑
n=0

bn(z − x0)n.

We conclude that

g(z) =
∞∑
n=0

bn(z − x0)n on Bδ(x0).

Therefore g is also analytic on I, and hence analytic on Ω. Since f = g on Ω+, by Corollary
16.4, f is identical to g on Ω. That is, (16.1) holds.

17 Residue Theorem

Definition 17.1. If f is analytic and has the Laurent series

f(z) =
∞∑

n=−∞

cn(z − z0)n

on a punctured neighborhood Bσ(z0)\{z0}, σ > 0. Then the coefficient c−1 is called the residue
of f at z0, denoted by

Res(f ; z0) = c−1.

Proposition 17.2. Let γ be the circle centered at z0 with radius R and counterclockwise ori-
entation. If f is analytic on BR(z0)\{z0}, z0 ∈ Ω, then

ˆ
γ

f(z)dz = 2πiRes(f ; z0).

Proof. Recall that the coefficient of Laurent series

c−1 =
1

2πi

ˆ
γ

f(z)dz.

Equivalently,
ˆ
γ

f(z)dz = 2πi c−1 = 2πiRes(f ; z0).

Corollary 17.3 (residue theorem). Let Ω be the open set enclosed by a simple closed curve
γ with counterclockwise orientation. If f is analytic on Ω\{z1, ..., zN} for N distinct points
z1, ..., zN ∈ Ω, then

ˆ
γ

f(z)dz = 2πi
N∑
k=1

Res(f ; zk).
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Proof. By choosing δ > 0 sufficiently small, we have Bδ(zk), k = 1, ..., N , are contained in Ω
and mutually disjoint. Let γk be the boundary of Bδ(zk) with counterclockwise orientation.
Then

ˆ
γ

f(z)dz =
N∑
k=1

ˆ
γk

f(z)dz = 2πi
N∑
k=1

Res(f ; zk).

Example 17.4.

(i) If f is analytic at z0, then Res(f ; z0) = 0.

(ii) Suppose that f has a pole of order less than or equal to m at z0 for some m ∈ N. The
function

g(z) = (z − z0)mf(z)

has a removable singularity at z0. We can extend the domain of g to include z0 and have
the Taylor series about z0,

g(z) =
∞∑
n=0

an(z − z0)n, an =
g(n)(z0)

n!
,

in a neighborhood of z0. And hence, the Laurent series of f about z0 is

f(z) =
∞∑
n=0

an(z − z0)n−m =
∞∑

k=−m

ak+m(z − z0)k

near z0. The residue of f at z0 is

Res(f ; z0) = am−1 =
g(m−1)(z0)

(m− 1)!
.

Example 17.5. Let f(z) =
ez − 1

z4
. Now we compute Res(f ; 0). Using the argument in Example

17.4,

f(z) =
g(z)

z4
, where g(z) = ez − 1.

Thus,

Res(f ; 0) =
g(3)(0)

3!
=

1

6
.

And by the residue theorem
ˆ
γ

f(z)dz = 2πiRes(f ; 0) =
πi

3

for any simple closed curve γ surrounding 0.
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Example 17.6. Let f(z) =
1

z(z − 2)5
. In order to evaluate the integral

ˆ
γ

f(z)dz,

where γ is the unit circle centered at 2 with counterclockwise orientation, we first compute
Res(f ; 2). Since

f(z) =
g(z)

(z − 2)5
, where g(z) =

1

z
.

Thus,

Res(f ; 2) =
g(4)(2)

4!
=

1

32
.

By the residue theorem
ˆ
γ

f(z)dz = 2πiRes(f ; 2) =
πi

16
.

Example 17.7. Let f(z) =
1

z(z − 2)5
. In order to evaluate the integral

ˆ
γ

f(z)dz,

where γ is the circle centered at 2 with radius 5, counterclockwise oriented, we need to compute
Res(f ; 2) and Res(f ; 0). In Example 17.6, we showed

Res(f ; 2) =
1

32
.

To compute Res(f ; 0), we have

f(z) =
h(z)

z
, where h(z) =

1

(z − 2)5
.

Thus,

Res(f ; 0) =
h(0)

0!
= − 1

32
.

By the residue theorem
ˆ
γ

f(z)dz = 2πi (Res(f ; 0) + Res(f ; 2)) = 0.

Example 17.8. Let f(z) =
1

1− cos z
. Notice that

1− cos z = 1−
∞∑
k=0

(−1)k

(2k)!
z2k =

∞∑
k=1

(−1)k+1

(2k)!
z2k.
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Hence, f has a pole of order 2 at 0. Let

f(z) =
g(z)

z2
, where g(z) =

z2

1− cos z
.

By L’Hospital rule,

lim
z→0

g(z) = lim
z→0

2z

sin z
= lim

z→0

2

cos z
= 2.

The residue of f at 0 can be computed by

Res(f ; 0) = lim
z→0

z2

1− cos z
− 2

z − 0
= 0.

Remark 17.9 (L’Hospital rule). If f and g are analytic at z0 and f(z0) = g(z0) = 0, then

lim
z→z0

f(z)

g(z)
= lim

z→z0

f ′(z)

g′(z)

provided the limit on the right-hand side exists.

Example 17.10. Let f(z) = cot z =
cos z

sin z
. Singularities of f occur at z = nπ, n ∈ Z. For

each z = nπ, n ∈ Z, it is a simple pole, i.e., pole of order 1, of
1

sin z
, and hence a simple pole

of f . Let

f(z) =
g(z)

z − nπ
, where g(z) =

(z − nπ) cos z

sin z
.

Then

Res(f ;nπ) = lim
z→nπ

(z − nπ) cos z

sin z
= 1.

Example 17.11. Let f(z) =
z − sinh z

z2 sinh z
. Singularities of f occur at z = nπi, n ∈ Z\{0}. At

each z = nπi, n ∈ Z\{0}, since

nπi− sinhnπi = nπi 6= 0

and (
z2 sinh z

)′ ∣∣∣∣
z=nπi

= 2nπi sinhnπi+ (nπi)2 coshnπi = (−1)n+1n2π2 6= 0,

z = nπi is a simple pole of f . Let

f(z) =
g(z)

z − nπi
, where g(z) =

(z − nπi)(z − sinh z)

z2 sinh z
.

Then

Res(f ;nπi) = lim
z→nπi

g(z) =
(−1)n+1i

nπ
.
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18 Improper Integrals

Definition 18.1. For a continuous real-valued function f defined on [0,∞) or R, the improper
integral of f is defined by

ˆ ∞
0

f(x)dx = lim
R→∞

ˆ R

0

f(x)dx

and
ˆ ∞
−∞

f(x)dx = lim
R1→∞

ˆ 0

−R1

f(x)dx+ lim
R2→∞

ˆ R2

0

f(x)dx, (18.1)

respectively, provided the limits on the right-hand sides of the equalities exist. There is an-
other value assigned to the improper integral in (18.1), called the Cauchy principal value of the
integral, and defined by

P.V.

ˆ ∞
−∞

f(x)dx = lim
R→∞

ˆ R

−R
f(x)dx.

Example 18.2. To evaluate the integral
ˆ ∞

0

dx

x6 + 1
,

firstly, we let γR, R > 1, be the closed curve consisting of CR, the upper-half circle centered at
the origin with radius R, and lR, the line segment from −R to R. And we assume that γR is
counterclockwise oriented. In the region enclosed by γR, there are three zeros of x6 + 1, that is,
c1 = eiπ/6, c2 = ei3π/6 = i and c3 = ei5π/6. By residue theorem,

ˆ
γR

dz

z6 + 1
= 2πi

3∑
k=1

Res

(
1

z6 + 1
; ck

)
.

For each k = 1, 2, 3, ck is a simple pole of
1

z6 + 1
, and we have

Res

(
1

z6 + 1
; ck

)
= lim

z→ck

z − ck
z6 + 1

=
1

6c5
k

= −ck
6
.

Therefore,
ˆ
γR

dz

z6 + 1
=

2π

3
.

Notice that
ˆ
lR

dz

z6 + 1
=

ˆ R

−R

dx

x6 + 1
.

And we have ∣∣∣∣ˆ
CR

dz

z6 + 1

∣∣∣∣ ≤ πR

R6 − 1
−→ 0 as R→∞.
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By passing to the limit R→∞,

P.V.

ˆ ∞
−∞

dx

x6 + 1
=

2π

3
.

Since
1

x6 + 1
is even, we have

ˆ ∞
0

dx

x6 + 1
=
π

3
.

Example 18.3. Now, we want to evaluate integrals of the form

ˆ ∞
−∞

f(x) sin axdx or

ˆ ∞
−∞

f(x) cos axdx, a > 0.

In view of Euler’s formula, it is equivalent to consider

ˆ ∞
−∞

f(x)eiaxdx.

These integrals occur in the theory of Fourier analysis. Let γR, CR and lR be defined as in
Example 18.2. If z1, ..., zN are all the singularities of f(z)eiaz in the region enclosed by γR for
R large. By residue theorem,

ˆ
γR

f(z)eiazdz = 2πi
N∑
k=1

Res
(
f(z)eiaz; zk

)
.

Therefore, we have

ˆ R

−R
f(x)eiaxdx =

ˆ
lR

f(z)eiazdz = 2πi
N∑
k=1

Res
(
f(z)eiaz; zk

)
−
ˆ
CR

f(z)eiazdz. (18.2)

Example 18.4. To evaluate the integral

ˆ ∞
0

cos 2x

(x2 + 4)2
dx,

we follow the argument in Example 18.3 with

f(z) =
1

(z2 + 4)2
and a = 2.

Notice that 2i is the only singularity of
ei2z

(z2 + 4)2
in the region enclosed by γR for R large. Then

(18.2) becomes

ˆ R

−R

ei2x

(x2 + 4)2
dx = 2πiRes

(
ei2z

(z2 + 4)2
; 2i

)
−
ˆ
CR

ei2z

(z2 + 4)2
dz.
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On one hand, 2i is a pole of order 2 of
ei2z

(z2 + 4)2
. By letting

ei2z

(z2 + 4)2
=

g(z)

(z − 2i)2
, where g(z) =

ei2z

(z + 2i)2
,

we have

Res

(
ei2z

(z2 + 4)2
; 2i

)
= g′(2i) =

5

32e4i
.

On the other hand, ∣∣∣∣ˆ
CR

ei2z

(z2 + 4)2
dz

∣∣∣∣ ≤ πR

(R2 − 4)2
−→ 0 as R→∞.

Therefore, by passing to the limit R→∞,

P.V.

ˆ ∞
−∞

ei2x

(x2 + 4)2
dx = 2πi · 5

32e4i
=

5π

16e4
.

Taking the real parts on both sides above yields

P.V.

ˆ ∞
−∞

cos 2x

(x2 + 4)2
dx =

5π

16e4
.

Since
cos 2x

(x2 + 4)2
is even,

ˆ ∞
0

cos 2x

(x2 + 4)2
dx =

5π

32e4
.

Lemma 18.5 (Jordan’s lemma). Let CR be defined as in Example 18.2. Suppose that

(i) f is analytic on {z ∈ C : Im z ≥ 0, |z| ≥ R0} for some R0 > 0;

(ii) For each R > R0, there is a positive constant MR such that

max
CR
|f | ≤MR,

and

lim
R→∞

MR = 0.

Then, for every a > 0,

lim
R→∞

ˆ
CR

f(z)eiazdz = 0.
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Proof. For a > 0, R > R0,
ˆ
CR

f(z)eiazdz =

ˆ π

0

f
(
Reiθ

)
eiaRe

iθ · iReiθdθ

= iR

ˆ π

0

f
(
Reiθ

)
e−aR sin θeiaR cos θeiθdθ.

Thus, ∣∣∣∣ˆ
CR

f(z)eiazdz

∣∣∣∣ ≤ RMR

ˆ π

0

e−aR sin θdθ.

Notice that
ˆ π

0

e−aR sin θdθ = 2

ˆ π/2

0

e−aR sin θdθ.

By using the fact that sin θ ≥ 2θ

π
for θ ∈

[
0,
π

2

]
,

ˆ π/2

0

e−aR sin θdθ ≤
ˆ π/2

0

e−2aRθ/πdθ =
π

2aR

(
1− e−aR

)
≤ π

2aR
.

Therefore, ∣∣∣∣ˆ
CR

f(z)eiazdz

∣∣∣∣ ≤ RMR ·
π

aR
−→ 0 as R→∞.

Example 18.6. To evaluate the integral
ˆ ∞

0

x sin 2x

x2 + 3
dx,

we follow the argument in Example 18.3 with

f(z) =
z

z2 + 3
and a = 2.

Notice that
√

3i is the only singularity of
zei2z

z2 + 3
enclosed by γR for R large. Then we have

ˆ R

−R

xei2x

x2 + 3
dx = 2πiRes

(
zei2z

z2 + 3
;
√

3i

)
−
ˆ
CR

zei2z

z2 + 3
dz.

Let

zei2z

z2 + 3
=

g(z)

z −
√

3i
, where g(z) =

zei2z

z +
√

3i
,

then

Res

(
zei2z

z2 + 3
;
√

3i

)
= g

(√
3i
)

=
1

2e2
√

3
.
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Moreover,

max
CR
|f | ≤ R

R2 − 3
−→ 0 as R→∞.

By Jordan’s lemma,

lim
R→∞

ˆ
CR

zei2z

z2 + 3
dz = 0.

Therefore,

P.V.

ˆ ∞
−∞

xei2x

x2 + 3
dx = 2πi · 1

2e2
√

3
=

πi

e2
√

3
.

Taking the imaginary parts on both sides above yields

P.V.

ˆ ∞
−∞

x sin 2x

x2 + 3
dx =

π

e2
√

3
.

Since
x sin 2x

x2 + 3
is even,

ˆ ∞
0

x sin 2x

x2 + 3
dx =

π

2e2
√

3
.

Example 18.7. To evaluate the Dirichlet integral
ˆ ∞

0

sinx

x
dx,

we let γρ,R, 0 < ρ < R, be the closed curve consisting of CR, l−R,−ρ, Cρ and lρ,R with counter-
clockwise orientation, where CR is the upper-half circle centered at origin with radius R from
R to −R, Cρ is the upper-half circle centered at origin with radius ρ from −ρ to ρ, l−R,−ρ is
the line segment from −R to −ρ, and lρ,R is the line segment from ρ to R. By Cauchy-Goursat
theorem,

ˆ
γR

eiz

z
dz = 0.

That is,
ˆ
CR

eiz

z
dz +

ˆ
l−R,−ρ

eiz

z
dz +

ˆ
Cρ

eiz

z
dz +

ˆ
lρ,R

eiz

z
dz = 0.

The last equality can be further rewritten as

ˆ −ρ
−R

eix

x
dx+

ˆ R

ρ

eix

x
dx = −

ˆ
Cρ

eiz

z
dz −

ˆ
CR

eiz

z
dz. (18.3)

For the left-hand side of (18.3), we have

ˆ −ρ
−R

eix

x
dx+

ˆ R

ρ

eix

x
dx = 2i

ˆ R

ρ

sinx

x
dx. (18.4)
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For the right-hand side of (18.3), first, −Cρ can be parametrized by ρeiθ, θ ∈ [0, π], and hence

ˆ
Cρ

eiz

z
dz = −

ˆ π

0

eiρe
iθ

ρeiθ
· iρeiθdθ = −i

ˆ π

0

eiρe
iθ

dθ.

By using the fact that

|ez − 1| ≤ C|z| for all |z| ≤ 1

for some positive constant C, we have, for ρ ≤ 1,∣∣∣∣ˆ π

0

(
eiρe

iθ − 1
)
dθ

∣∣∣∣ ≤ ˆ π

0

∣∣∣eiρeiθ − 1
∣∣∣ dθ ≤ ˆ π

0

Cρdθ = Cπρ.

Thus,

lim
ρ→0

ˆ π

0

eiρe
iθ

dθ = π,

which gives

lim
ρ→0

ˆ
Cρ

eiz

z
dz = −πi.

Second, by Jordan’s lemma,

lim
R→∞

ˆ
CR

eiz

z
dz = 0.

By (18.4) and the last two equalities, (18.3) implies

2i

ˆ ∞
0

sinx

x
dx = πi.

That is,
ˆ ∞

0

sinx

x
dx =

π

2
.

Example 18.8. For −1 < a < 3, to evaluate the integral
ˆ ∞

0

xa

(x2 + 1)2
dx,

we let

f(z) =
za

(z2 + 1)2
,

where za = ea log z is defined by using the branch of logarithm

log z = ln |z|+ iθ, θ ∈ arg z, θ ∈
(
−π

2
,
3π

2

)
.
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In addition, we let γρ,R, CR, Cρ, l−R,−ρ and lρ,R be defined as in Example 18.7 with 0 < ρ <
1 < R. Since i is the only singularity of f in the region enclosed by γρ,R, by residue theorem,

ˆ
γρ,R

f(z)dz = 2πiRes (f(z); i) . (18.5)

By letting

f(z) =
g(z)

(z − i)2
, where g(z) =

za

(z + i)2
,

we have

Res (f(z); i) = g′(i) =
(a− 2)za + iaza−1

(z + i)3

∣∣∣∣
z=i

=
1− a

4
e(a−1) log i = ieiaπ/2

(
a− 1

4

)
.

We can divide the integral along γρ,R into four parts.
ˆ
γρ,R

f(z)dz =

ˆ
CR

za

(z2 + 1)2
dz +

ˆ
l−R,−ρ

za

(z2 + 1)2
dz +

ˆ
Cρ

za

(z2 + 1)2
dz +

ˆ
lρ,R

za

(z2 + 1)2
dz.

First,

ˆ
lρ,R

za

(z2 + 1)2
dz =

ˆ R

ρ

xa

(x2 + 1)2
dx.

Second,

ˆ
l−R,−ρ

za

(z2 + 1)2
dz =

ˆ −ρ
−R

ea(ln |x|+iπ)

(x2 + 1)2
dx = eiaπ

ˆ R

ρ

xa

(x2 + 1)2
dx.

Third,
ˆ
Cρ

za

(z2 + 1)2
dz = −

ˆ
−Cρ

za

(z2 + 1)2
dz

= −
ˆ π

0

ea log(ρeiθ)

(ρ2e2iθ + 1)2 · iρe
iθdθ

= −iρ
ˆ π

0

ea(ln ρ+iθ)

(ρ2e2iθ + 1)2 · e
iθdθ

= −iρa+1

ˆ π

0

ei(a+1)θ

(ρ2e2iθ + 1)2dθ.

Thus, ∣∣∣∣∣
ˆ
Cρ

za

(z2 + 1)2
dz

∣∣∣∣∣ ≤ πρa+1

(1− ρ2)2 ,

which implies

lim
ρ→0

ˆ
Cρ

za

(z2 + 1)2
dz = 0.
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Finally,

ˆ
CR

za

(z2 + 1)2
dz =

ˆ π

0

ea log(Reiθ)

(R2e2iθ + 1)2 · iRe
iθdθ

= iR

ˆ π

0

ea(lnR+iθ)

(R2e2iθ + 1)2 · e
iθdθ

= iRa+1

ˆ π

0

ei(a+1)θ

(R2e2iθ + 1)2dθ.

Thus, ∣∣∣∣ˆ
CR

za

(z2 + 1)2
dz

∣∣∣∣ ≤ πRa+1

(R2 − 1)2 ,

which implies

lim
R→∞

ˆ
CR

za

(z2 + 1)2
dz = 0.

By passing to the limit ρ→ 0 and R→∞, (18.5) becomes

(
1 + eiaπ

) ˆ ∞
0

xa

(x2 + 1)2
dx = 2πi · ieiaπ/2

(
a− 1

4

)
=
π(1− a)eiaπ/2

2
.

Therefore, if a 6= 1,

ˆ ∞
0

xa

(x2 + 1)2
dx =

π(1− a)eiaπ/2

2 (1 + eiaπ)
=

π(1− a)

2 (e−iaπ/2 + eiaπ/2)
=

π(1− a)

4 cos(aπ/2)
.

For a = 1, by change of variables y = x2 + 1,
ˆ ∞

0

xa

(x2 + 1)2
dx =

ˆ ∞
0

x

(x2 + 1)2
dx

= lim
R→∞

ˆ R

0

x

(x2 + 1)2
dx =

1

2
lim
R→∞

ˆ R2+1

1

dy

y2
=

1

2
lim
R→∞

(
1− 1

R2 + 1

)
=

1

2
.

Example 18.9. For 0 < a < 1, to evaluate the integral
ˆ ∞

0

x−a

x+ 1
dx,

we let

f(z) =
z−a

z + 1
,

where z−a = e−a log z is defined by using the branch of logarithm

log z = ln |z|+ iθ, θ ∈ arg z, θ ∈ (0, 2π).

Moreover, for 0 < ρ < 1 < R and 0 < α <
π

2
, we define γρ,R,α to be the simple closed curve

consisting of
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(i) CR, the arc on the circle ∂BR(0) from Reiα to Re−iα counterclockwise,

(ii) l−, the line segment from Re−iα to ρe−iα,

(iii) Cρ, the arc on the circle ∂Bρ(0) from ρe−iα to ρeiα clockwise, and

(iv) l+, the line segment from ρeiα to Reiα.

Since −1 is the only singularity of f in the region enclosed by γρ,R,α, by residue theorem,

ˆ
γρ,R,α

f(z)dz = 2πiRes (f(z);−1) . (18.6)

Let

f(z) =
g(z)

z + 1
, where g(z) = z−a,

then we have

Res (f(z);−1) = g(−1) = (−1)−a = e−iaπ.

Divide the integral along γρ,R,α into four parts

ˆ
γρ,R,α

f(z)dz =

ˆ
CR

z−a

z + 1
dz +

ˆ
l−

z−a

z + 1
dz +

ˆ
Cρ

z−a

z + 1
dz +

ˆ
l+

z−a

z + 1
dz.

First,

ˆ
CR

z−a

z + 1
dz =

ˆ 2π−α

α

(
Reiθ

)−a
Reiθ + 1

· iReiθdθ

= iR

ˆ 2π−α

α

e−a(lnR+iθ)

Reiθ + 1
eiθdθ

= iR1−a
ˆ 2π−α

α

ei(1−a)θ

Reiθ + 1
dθ

Second,

ˆ
l−

z−a

z + 1
dz =

ˆ R

ρ

((R + ρ− r)e−iα)−a

(R + ρ− r)e−iα + 1
· (−e−iα)dr

= −e−iα
ˆ R

ρ

e−a(ln(R+ρ−r)+i(2π−α))

(R + ρ− r)e−iα + 1
dr

= −e−i2aπ−i(1−a)α

ˆ R

ρ

(R + ρ− r)−a

(R + ρ− r)e−iα + 1
dr

= −e−i2aπ−i(1−a)α

ˆ R

ρ

r−a

re−iα + 1
dr.
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Third,

ˆ
Cρ

z−a

z + 1
dz =

ˆ 2π−α

α

(
ρei(2π−θ)

)−a
ρei(2π−θ) + 1

·
(
−iρei(2π−θ)

)
dθ

= −iρ
ˆ 2π−α

α

e−a(ln ρ+i(2π−θ))

ρei(2π−θ) + 1
e−iθdθ

= −iρ1−a
ˆ 2π−α

α

ei(a−1)θ−i2aπ

ρei(2π−θ) + 1
dθ.

Finally,

ˆ
l+

za

(z2 + 1)2
dz =

ˆ R

ρ

(reiα)−a

reiα + 1
· eiαdr

= eiα
ˆ R

ρ

e−a(ln r+iα)

reiα + 1
dr

= ei(1−a)α

ˆ R

ρ

r−a

reiα + 1
dr.

By passing to the limit α→ 0, (18.6) implies

(
1− e−i2aπ

) ˆ R

ρ

r−a

r + 1
dr + iR1−a

ˆ 2π

0

ei(1−a)θ

Reiθ + 1
dθ − iρ1−a

ˆ 2π

0

ei(a−1)θ−i2aπ

ρei(2π−θ) + 1
dθ = 2πie−iaπ.

Since ∣∣∣∣iR1−a
ˆ 2π

0

ei(1−a)θ

Reiθ + 1
dθ

∣∣∣∣ ≤ R1−a · 2π

R− 1
−→ 0 as R→∞

and ∣∣∣∣iρ1−a
ˆ 2π

0

ei(a−1)θ−i2aπ

ρei(2π−θ) + 1
dθ

∣∣∣∣ ≤ ρ1−a · 2π

1− ρ
−→ 0 as ρ→ 0,

by passing to the limits ρ→ 0 and R→∞, we have(
1− e−i2aπ

) ˆ ∞
0

r−a

r + 1
dr = 2πie−iaπ.

That is,

ˆ ∞
0

r−a

r + 1
dr =

2πi

eiaπ − e−iaπ
=

π

sin aπ
.

19 Definite Integrals

Example 19.1. Residue theorem can be used to evaluate definite integrals of the form

ˆ 2π

0

F (sin θ, cos θ) dθ.
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Let z(θ) = eiθ, θ ∈ [0, 2π], then
1

z(θ)
= e−iθ. Thus,

sin θ =
eiθ − e−iθ

2i
=

z(θ)− 1

z(θ)

2i
and cos θ =

eiθ + e−iθ

2
=

z(θ) +
1

z(θ)

2
,

and hence,

ˆ 2π

0

F (sin θ, cos θ) dθ =

ˆ 2π

0

F

z(θ)− 1

z(θ)

2i
,

z(θ) +
1

z(θ)

2

 dθ.

Since z′(θ) = ieiθ = iz(θ), by letting γ be the unit circle centered at the origin with counter-
clockwise orientation, we further have

ˆ 2π

0

F (sin θ, cos θ) dθ =

ˆ
γ

F

(
z − z−1

2i
,
z + z−1

2

)
1

iz
dz.

Example 19.2. To evaluate

ˆ 2π

0

dθ

1 + a sin θ
, −1 < a < 1,

we have, for a 6= 0,

ˆ 2π

0

dθ

1 + a sin θ
=

ˆ
γ

1

1 + a(z − z−1)/2i
· 1

iz
dz =

ˆ
γ

2/a

z2 + 2iz/a− 1
dz,

where γ is the unit circle centered at the origin with counterclockwise orientation. The polyno-
mial z2 + 2iz/a+ 1 has pure imaginary roots

z1 =

(
−1 +

√
1− a2

a

)
i and z2 =

(
−1−

√
1− a2

a

)
i.

Thus,

f(z) :=
2/a

z2 + 2iz/a− 1
=

2/a

(z − z1)(z − z2)
.

Since |a| < 1,

|z2| =
1 +
√

1− a2

|a|
> 1.

Moreover, since |z1||z2| = 1, we have

|z1| < 1.

Hence, the only singularity of f in the region enclosed by γ is z1. Let

f(z) =
g(z)

z − z1

, where g(z) =
2/a

z − z2

.
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Then

Res (f ; z1) = g(z1) =
1

i
√

1− a2
.

By residue theorem,

ˆ 2π

0

dθ

1 + a sin θ
=

ˆ
γ

2/a

z2 + 2iz/a− 1
dz = 2πi · 1

i
√

1− a2
=

2π√
1− a2

.

As for the case a = 0,

ˆ 2π

0

dθ

1 + a sin θ
=

ˆ 2π

0

1dθ = 2π.

We conclude that
ˆ 2π

0

dθ

1 + a sin θ
=

2π√
1− a2

for − 1 < a < 1.

Example 19.3. To evaluate

ˆ π

0

cos 2θdθ

1− 2a cos θ + a2
, −1 < a < 1,

we have
ˆ π

0

cos 2θdθ

1− 2a cos θ + a2
=

1

2

ˆ 2π

0

cos 2θdθ

1− 2a cos θ + a2

=
1

2

ˆ 2π

0

(2 cos2 θ − 1) dθ

1− 2a cos θ + a2

=
1

2

ˆ
γ

(z + z−1)
2
/2− 1

1− a (z + z−1) + a2
· 1

iz
dz

=
i

4

ˆ
γ

z4 + 1

(z − a)(az − 1)z2
dz,

where γ is the unit circle centered at the origin with counterclockwise orientation. If a 6= 0, let

f(z) =
z4 + 1

(z − a)(az − 1)z2
,

then singularities of f that lie in the region enclosed by γ are 0 and a. For the residue of f at
0, we let

f(z) =
g(z)

z2
, where g(z) =

z4 + 1

(z − a)(az − 1)
,

then

Res (f ; 0) = g′(0) =
a2 + 1

a2
.
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For the residue of f at a, we let

f(z) =
h(z)

z − a
, where h(z) =

z4 + 1

(az − 1)z2
,

then

Res (f ; a) = h(a) =
a4 + 1

(a2 − 1) a2
.

By residue theorem,

ˆ π

0

cos 2θdθ

1− 2a cos θ + a2
=
i

4

ˆ
γ

z4 + 1

(z − a)(az − 1)z2
dz

= −π
2

(
a2 + 1

a2
+

a4 + 1

(a2 − 1) a2

)
=

πa2

1− a2
.

As for the case a = 0,

ˆ π

0

cos 2θdθ

1− 2a cos θ + a2
=

ˆ π

0

cos 2θdθ = 0.

That is,

ˆ π

0

cos 2θdθ

1− 2a cos θ + a2
=

πa2

1− a2
for − 1 < a < 1.

20 Argument Principle

Definition 20.1. A function f is meromorphic in an open connected set Ω if f is analytic
throughout Ω except for poles.

Definition 20.2. Given a curve γ from z1 to z2 parametrized by z(t), t ∈ [a, b], if f is analytic
and has no zero on γ, we define ∆γ arg f(z) to be the continuous change in arg f(z) along γ
from z1 to z2. That is,

∆γ arg f(z) = θ(b)− θ(a),

provided that

f(z(t)) = ρ(t)eiθ(t), t ∈ [a, b], (20.1)

where ρ and θ are continuous on [a, b].

Remark 20.3.

(i) ρ(t) = |f(z(t))| can be uniquely determined. As for θ(t), we only have θ(t) ∈ arg f(z(t))
for each t ∈ [a, b].

(ii) If θ and θ̃ are both continuous and satisfy (20.1), then we can show that θ(t) = ˜θ(t) + 2kπ
for some k ∈ Z. Thus, the definition of ∆γ arg f(z) is independent of the choice of θ.
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(iii) If there is α ∈ R such that f(γ) ∩ {reiα : r ≥ 0} = φ, then we can use

θ(t) = θα(t),

where

θα(t) ∈ arg f(z(t)) ∩ (α, α + 2π),

in (20.1).

(iv) Suppose that no such α in (iii) exists. For each t ∈ [a, b], we can find an open interval
It containing t such that the assumption in (iii) holds if we replace γ by f (z(It ∩ [a, b])).
Since [a, b] is compact, we can find finitely many t1, t2, ..., tN ∈ [a, b], such that [a, b] ⊂
∪Nj=1Ij, where Ij = Itj . Without loss of generality, we assume that

a ∈ I1, b ∈ IN , and there is sj ∈ Ij ∩ Ij+1 6= φ for all j = 1, ..., N − 1.

On each Ij ∩ [a, b], j = 1, ..., N , there is a continuous function θj such that

θj(t) ∈ arg f(z(t)) for all t ∈ Ij ∩ [a, b].

We let Θ1 = θ1 on I1 ∩ [a, b]. Inductively, for Θj, j = 1, ..., N − 1, already defined, we
choose kj+1 ∈ Z such that θj+1(sj) + 2kj+1π = Θj(sj) and let

Θj+1(t) = θj+1(t) + 2kj+1π for all t ∈ Ij+1 ∩ [a, b].

Therefore, we can let

θ(t) = Θj(t) if t ∈ Ij ∩ [a, b],

which is a continuous function satisfying (20.1).

Remark 20.4. Suppose that γ is a simple closed curve with counterclockwise orientation. f is
meromorphic and has no zero and no pole on γ. Then ∆γ arg f(z) is independent of the choice
of the starting point of γ. Moreover, it is an integral multiple of 2π. The integer

1

2π
∆γ arg f(z)

represents the number of the times that the image of γ under f winds around the origin. It is
positive if the image winds around the origin in counterclockwise direction, and it is negative
if the image winds around the origin in clockwise direction. Moreover, if the image f (γ) does
not enclose the origin, then

∆γ arg f(z) = 0.

Theorem 20.5 (argument principle). Suppose that f is meromorphic on an open connected
set Ω. Let γ be a simple closed curve with counterclockwise orientation in Ω. If f has no pole
and no zero on γ, then

1

2π
∆γ arg f(z) =

1

2πi

ˆ
γ

f ′(z)

f(z)
dz = Z − P,

where Z is the number of zeros of f inside γ, and P is the number of poles of f inside γ, both
counting multiplicities.
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Proof. Let γ be parametrized by z(t), t ∈ [a, b]. We haveˆ
γ

f ′(z)

f(z)
dz =

ˆ b

a

f ′(z(t))z′(t)

f(z(t))
dt.

Notice that

f(z(t)) = ρ(t)eiθ(t), t ∈ [a, b],

for ρ and θ smooth. We have

f ′(z(t))z′(t) =
d

dt
f(z(t)) =

d

dt
ρ(t)eiθ(t) = ρ′(t)eiθ(t) + iρ(t)eiθ(t)θ′(t).

Therefore, ˆ
γ

f ′(z)

f(z)
dz =

ˆ b

a

ρ′(t)

ρ(t)
dt+ i

ˆ b

a

θ′(t)dt

= ln ρ(b)− ln ρ(a) + i (θ(b)− θ(a)) = i∆γ arg f(z). (20.2)

On the other hand, in the region enclosed by γ, suppose f has zeros Zj of order mj, j = 1, ...,M ,
and poles Pk of order nk, k = 1, ..., N . Then near each Zj, j = 1, ...,M ,

f(z) = (z − Zj)mjgj(z)

for some gj analytic at Zj with gj(Zj) 6= 0. Hence, near Zj,

f ′(z)

f(z)
=
mj(z − Zj)mj−1gj(z) + (z − Zj)mjg′j(z)

(z − Zj)mjgj(z)
=

mj

z − Zj
+
g′j(z)

gj(z)
.

That is, f ′/f has a simple pole with residue mj at Zj, j = 1, ...,M . Near each Pk, k = 1, ..., N ,

f(z) =
hk(z)

(z − Pk)nk

for some hk analytic at Pk with hk(Pk) 6= 0. Hence, near Pk,

f ′(z)

f(z)
=
−nk(z − Pk)−nk−1hk(z) + (z − Pk)−nkh′k(z)

(z − Pk)−nkhk(z)
= − nk

z − Pk
+
h′k(z)

hk(z)
.

That is, f ′/f has a simple pole with residue −nk at Pk, k = 1, ..., N . By residue theorem,

ˆ
γ

f ′(z)

f(z)
dz = 2πi

(
M∑
j=1

mj −
N∑
k=1

nk

)
= 2πi (Z − P ) . (20.3)

Combining (20.2) and (20.3), we complete the proof.

Example 20.6. Let

f(z) =
z3 + 2

z
= z2 +

2

z
.

f has a simple pole at 0, and all zeros of f are outside the unit disc centered at the origin. Let
γ be the unit circle centered at the origin with counterclockwise orientation. Then the argument
principle tells us that

1

2π
∆γ arg f(z) = 0− 1 = −1.

That is, the image of γ under f winds around the origin once in the clockwise direction.
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Example 20.7. In this example, we determine the number of roots of the equation P (z) =
z4 + 8z3 + 3z2 + 2z + 2 = 0 on the right-half plane {z ∈ C : Re z > 0}. For R > 0, let γR be
the closed curve consisting the line segment lR from iR to −iR and the arc CR on ∂BR(0) from
−iR to iR counterclockwise. For any pure imaginary number ci, c ∈ R,

P (ci) = (ci)4 + 8(ci)3 + 3(ci)2 + 2(ci) + 2 = c4 − 3c2 + 2 +
(
−8c3 + 2c

)
i.

Since c4 − 3c2 + 2 and −8c3 + 2c have no common zero, the equation P (z) = 0 has no root on
the imaginary axis. Also, by the fundamental theorem of algebra, the equation has exact four
roots. Thus, P (z) has no zero on CR provided R sufficiently large. Since P is analytic, by the
argument principle,

1

2πi

ˆ
γR

P ′(z)

P (z)
dz

equals to the number of zeros of P (z) in the right-half plane provided R large. First, as in
(20.2) ˆ

lR

P ′(z)

P (z)
dz = i∆lR arg f(z).

Notice that ImP (ci) = 0 at c = −1/2, 0, or 1/2. At these points, P (z) takes values 21/16,
2, and 21/16, respectively. Thus, the image of lR under P does not intersect the half line
{x ∈ R : x ≤ 0}. As a consequence, for R sufficiently large,

∆lR arg f(z) = Arg
(
R4 − 3R2 + 2 +

(
8R3 − 2R

)
i
)
− Arg

(
R4 − 3R2 + 2−

(
8R3 − 2R

)
i
)

= arctan

(
8R3 − 2R

R4 − 3R2 + 2

)
− arctan

(
−8R3 + 2R

R4 − 3R2 + 2

)
−→ 0 as R→ 0.

That is,

lim
R→∞

ˆ
lR

P ′(z)

P (z)
dz = 0. (20.4)

Second,
ˆ
CR

P ′(z)

P (z)
dz =

ˆ π/2

−π/2

4R3ei3θ + 24R2ei2θ + 6Reiθ + 2

R4ei4θ + 8R3ei3θ + 3R2ei2θ + 2Reiθ + 2
· iReiθdθ.

Since the integrand in the last integral

4R3ei3θ + 24R2ei2θ + 6Reiθ + 2

R4ei4θ + 8R3ei3θ + 3R2ei2θ + 2Reiθ + 2
· iReiθ −→ 4i as R→∞,

uniformly in θ ∈ [−π/2, π/2]. We have

lim
R→∞

ˆ
CR

P ′(z)

P (z)
dz = 4πi. (20.5)

Combining (20.4) and (20.5), we obtain

lim
R→∞

ˆ
γR

P ′(z)

P (z)
dz = 4πi.

Therefore, there are two roots of P (z) = 0 on the right-half plane.
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21 Rouché’s Theorem

Theorem 21.1 (Rouché’s theorem). Let γ be a simple closed curve. Suppose that f and g are
analytic on the closure of the region enclosed by γ and |f(z)| > |g(z)| for all z ∈ γ. Then f(z)
and f(z) + g(z) have the same numbers of zeros, counting multiplicities, in the region enclosed
by γ.

Proof. Without loss of generality, we assume that γ is counterclockwise oriented. Notice that
|f(z)| > |g(z)| ≥ 0 and |f(z) + g(z)| ≥ |f(z)| − |g(z)| > 0 on γ. By the argument principle, it
suffices to show that

1

2π
∆γ arg f(z) =

1

2π
∆γ arg (f(z) + g(z)) .

Moreover, we have,

f(z) + g(z) = f(z)

(
1 +

g(z)

f(z)

)
for z ∈ γ.

Therefore,

∆γ arg (f(z) + g(z)) = ∆γ arg

[
f(z)

(
1 +

g(z)

f(z)

)]
= ∆γ arg f(z) + ∆γ arg

(
1 +

g(z)

f(z)

)
. (21.1)

Since ∣∣∣∣(1 +
g(z)

f(z)

)
− 1

∣∣∣∣ =
|g(z)|
|f(z)|

< 1 for z ∈ γ,

the image of γ under 1 +
g(z)

f(z)
is contained in B1(1). Hence, it does not enclose the origin. As

a consequence,

∆γ arg

(
1 +

g(z)

f(z)

)
= 0. (21.2)

Combining (21.1) and (21.2), we complete the proof.

Example 21.2. In order to determine the number of roots, counting multiplicities, of the
equation

z4 + 3z3 + 6 = 0

inside the circle ∂B2(0), we let

f(z) = 3z3 and g(z) = z4 + 6.

We have, on ∂B2(0),

|f(z)| = 24 and |g(z)| ≤ 16 + 6 = 22.

By Rouché’s theorem, f and f+g have the same numbers of roots, counting multiplicities, inside
the circle. Since f has three roots, counting multiplicities, inside the circle, so does f + g. That
is, the equation

z4 + 3z3 + 6 = 0

has three roots, counting multiplicities, inside the circle.

80



Example 21.3. We can use Rouché’s theorem to prove the fundamental theorem of algebra.
Given a polynomial

P (z) = a0 + a1z + a2z
2 + ...+ anz

n, an 6= 0, n ∈ N,

we want to show that P has n roots, counting multiplicities. Let

f(z) = anz
n and g(z) = a0 + a1z + a2z

2 + ...+ an−1z
n−1.

For R > 0 sufficiently large, we have

|f(z)| > |g(z)| for z ∈ ∂BR(0).

By Rouché’s theorem, both f and f + g have n zeros, counting multiplicities, in BR(0). Hence,
we conclude that P (z) = f(z) + g(z) has n zeros, counting multiplicities, in C.

22 Mappings by Elementary Functions

Linear Transformation. A general non-constant linear transformation is defined by

w = az + b

for some a, b ∈ C, a 6= 0. Let a = r0e
iθ0. Recalling that, in Example 4.8, we have

(i) The mapping w = z + b is a translation;

(ii) The mapping w = eiθ0z is a rotation;

(iii) The mapping w = r0z is a scaling.

Therefore, the mapping w = az + b can be regarded as a rotation and a scaling, followed by a
translation. Moreover, it is one-to-one from C onto C.

Example 22.1. We consider the mapping

w = (1 + i)z + 2.

Since

1 + i =
√

2eiπ/4,

this mapping is the rotation counterclockwise with angle π/4 and expansion by factor
√

2, fol-
lowed by a translation z 7→ z + 2. Thus, it transforms the rectangle region with vertices 0, 1,
1 + 2i and 2i into another rectangle region with vertices 2, 3 + i, 1 + 3i and 2i.

Mapping by 1/z. We consider the mapping

w =
1

z
,

which establishes a one-to-one correspondence between C\{0} and C\{0}. We have

w =
z

|z|2
.
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Hence,

|w| = 1

|z|
and argw = arg z.

Also, we have

|w| = 1

|z|
and argw = arg z.

Therefore, it maps points interior to the unit circle to the exterior radially and vice versa, and
maps points on the unit circle to itself. And then it is followed by a reflection with respect to
the real axis.

In the following, we show that the mapping w = 1/z transforms circles and lines into circles
and lines. If

w = u+ vi =
1

z
=

1

x+ yi
,

then

u =
x

x2 + y2
=

x

|z|2
and v = − y

x2 + y2
= − y

|z|2
. (22.1)

Conversely, if

z = x+ yi =
1

w
=

1

u+ vi
,

then

x =
u

|w|2
and y = − v

|w|2
.

For a given circle, it can be described by the equation

(x− x0)2 + (y − y0)2 = R2

with R > 0. And for a given line, it can be described by the equation

ax+ by = c

with a and b are not both zero. Now, we consider the equation

A
(
x2 + y2

)
+Bx+ Cy +D = 0, (22.2)

where A, B, C and D are real numbers with B2 + C2 > 4AD. Such an equation represents an
arbitrary circle or line. When A 6= 0, (22.2) can be rewritten as(

x+
B

2A

)2

+

(
y +

C

2A

)2

=

(√
B2 + C2 − 4AD

2A

)2

.

When A = 0, (22.2) becomes

Bx+ Cy +D = 0
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with B2 + C2 > 0, that is, B and C are not both zero. Putting (22.1) into (22.2) gives

A
(
u2 + v2

)
|z|4 +Bu|z|2 − Cv|z|2 +D = 0.

Then, using the relation,

(u2 + v2)(x2 + y2) = |w|2|z|2 = 1,

we conclude that u and v satisfy

D
(
u2 + v2

)
+Bu− Cv + A = 0.

To summarize, under the mapping w = 1/z,

(i) a circle (A 6= 0) not passing through the origin (D 6= 0) is mapped onto a circle not
passing through the origin;

(ii) points on a circle (A 6= 0) through the origin (D = 0) are mapped onto a line not passing
through the origin;

(iii) a line (A = 0) not passing through the origin (D 6= 0) is mapped onto a circle through the
origin except for the origin;

(iv) points on a line (A = 0) through the origin (D = 0) are mapped onto a line through the
origin except for the origin.

Remark 22.2. By introducing the extended complex numbers C = C ∪ {∞}, the mapping
w = 1/z is one-to-one from C onto C. w maps 0 and ∞ to ∞ and 0, respectively.

Example 22.3. According to the above derivation, a vertical line x = c1 with c1 6= 0 is
transformed by the mapping w = 1/z onto the circle

−c1

(
u2 + v2

)
+ u = 0,

or (
u− 1

2c1

)2

+ v2 =

(
1

2c1

)2

,

except for the origin. A horizontal line y = c2 with c2 6= 0 is transformed by the mapping
w = 1/z onto the circle

c2

(
u2 + v2

)
+ v = 0,

or

u2 +

(
v +

1

2c1

)2

=

(
1

2c2

)2

,

except for the origin.
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Example 22.4. Under the mapping w = 1/z, we show that the half plane {z : Re z > c1} with
c1 > 0 is mapped onto the disc {w : |w − 1/2c1| < 1/2c1}. For any c > c1, by Example 22.3,
the line {z : Re z = c} is mapped onto {w 6= 0 : |w − 1/2c| = 1/2c}. Since

{z : Re z > c1} =
⋃
c>c1

{z : Re z = c}

and {
w :

∣∣∣∣w − 1

2c1

∣∣∣∣ < 1

2c1

}
=
⋃
c>c1

{
w 6= 0 :

∣∣∣∣w − 1

2c

∣∣∣∣ =
1

2c

}
,

we conclude that half plane {z : Re z > c1} is mapped onto the disc {w : |w − 1/2c1| < 1/2c1}.

Linear Fractional Transformation. A transformation

w =
az + b

cz + d
, (22.3)

where a, b, c and d are complex numbers with ad − bc 6= 0, is called a linear fractional trans-
formation or Möbius transformation. Since above definition can be written as

cwz + dw − az − b = 0, (22.4)

it is also called a bilinear transformation.
If c = 0, the mapping (22.3) reduces to a linear transformation

w =
a

d
z +

b

d
, ad 6= 0.

If c 6= 0, (22.3) can be rewritten as

w =
a

c
+
bc− ad

c
· 1

cz + d
.

It can be regarded as a composition of mappings

Z = cz + d, W =
1

Z
, and w =

a

c
+
bc− ad

c
W.

Such a mapping is one-to-one from C\{−d/c} onto C\{a/c}. Moreover, it transforms circles
and lines into circles and lines.

Remark 22.5. The mapping w =
az + b

cz + d
, ad− bc 6= 0, is one-to-one from C onto C. w maps

−d/c and ∞ to ∞ and a/c, respectively.

Proposition 22.6. Given three distinct points z1, z2, z3 and three distinct points w1, w2, w3,
there is a unique linear fractional transformation that maps zk to wk, k = 1, 2, 3.

Proof. Notice that a linear fractional transformation of the form (22.3) can be determined
implicitly by (22.4). By putting (zk, wk) into (22.4), k = 1, 2, 3, we obtain three equations of
four unknowns a, b, c and d. Thus, the ratios of the coefficients a, b, c and d can be uniquely
determined. Consequently, the transformation is uniquely determined.
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Example 22.7. Find the linear fractional transformation

w =
az + b

cz + d

that maps points 2, i and −2 to 1, i and −1, respectively. Taking the values of w at z = 2 and
z = −2, we have

2a+ b

2c+ d
= 1 and

−2a+ b

−2c+ d
= −1.

The above equalities imply that

b = 2c and d = 2a.

Thus,

w =
az + 2c

cz + 2a
.

Since i is mapped to i, above equality gives c = ai/3. Therefore,

w =
az +

2ai

3
ai

3
z + 2a

=
3z + 2i

iz + 6
.

Proposition 22.8. The equation

(w − w1)(w2 − w3)

(w − w3)(w2 − w1)
=

(z − z1)(z2 − z3)

(z − z3)(z2 − z1)
(22.5)

defines implicitly a linear fractional transformation that maps distinct points z1, z2, z3 to distinct
points w1, w2, w3, respectively.

Proof. (22.5) can be written as

(w − w1)(w2 − w3)(z − z3)(z2 − z1) = (w − w3)(w2 − w1)(z − z1)(z2 − z3). (22.6)

Putting z = z1 into (22.6), we have

(w − w1)(w2 − w3)(z1 − z3)(z2 − z1) = 0.

It follows that w = w1. Putting z = z2 into (22.6), we have

(w − w1)(w2 − w3) = (w − w3)(w2 − w1)

It follows that w = w2. Putting z = z3 into (22.6), we have

0 = (w − w3)(w2 − w1)(z3 − z1)(z2 − z3).

It follows that w = w3. Moreover, the mapping defined by (22.5) can be written in the form
(22.4), i.e.,

cwz + dw − az − b = 0.

Since the mapping is not constant, the condition ad− bc 6= 0 is satisfied. Hence, (22.5) defines
a linear fractional transformation mapping z1, z2 and z3 to w1, w2 and w3, respectively.
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Example 22.9. By using Proposition 22.8, the linear fractional transformation that maps
points 2, i and −2 to 1, i and −1 we found in Example 22.7 can be obtained by solving the
equation

(w − 1)(i+ 1)

(w + 1)(i− 1)
=

(z − 2)(i+ 2)

(z + 2)(i− 2)
.

The above equation gives

w =
3z + 2i

iz + 6
.

Proposition 22.10. For a linear fractional transformation, the following two statements are
equivalents.

(i) It maps the upper half plane {z : Im z > 0} onto the disc {w : |w| < 1} and the boundary
of the half plane {z : Im z = 0} into the boundary of the disc {w : |w| = 1}.

(ii) It has the form

w = eiα
(
z − z0

z − z0

)
,

where α ∈ R and z0 ∈ C with Im z0 > 0.

Remark 22.11. In fact, the mapping maps {z : Im z = 0} onto {w : |w| = 1}\{eiα}.

Proof. Assuming (i), we let

w =
az + b

cz + d
. (22.7)

Notice that the line {z : Im z = 0} is mapped to the circle {w : |w| = 1}. We have |w| = 1 if
z = 0, which implies

|b| = |d| 6= 0.

Consider a sequence zn on {z : Im z = 0} with |zn| → ∞, similarly, we have

|a| = |c| 6= 0.

We can rewrite (22.7) as

w =
a

c
· z + b/a

z + d/c
. (22.8)

Since |a/c| = 1 and |b/a| = |d/c| 6= 0, (22.8) can be written as

w = eiα
(
z − z0

z − z1

)
(22.9)

for some α ∈ R and z0, z1 ∈ C with |z0| = |z1| 6= 0. Now, putting z = 1 into (22.9), we have

|1− z0| = |1− z1|,
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which implies

1− z0 − z0 + |z0|2 = |1− z0|2 = |1− z1|2 = 1− z1 − z1 + |z1|2.

Since |z0| = |z1|, we have

z0 + z0 = z1 + z1,

that is, Re z0 = Re z1. It follows that

z1 = z0 or z1 = z0.

If z1 = z0, then w becomes a constant. Therefore, z1 = z0, and we conclude that

w = eiα
(
z − z0

z − z0

)
.

Since the mapping maps z0 to the origin, z0 must be in the upper half plane {z : Im z > 0},
that is, Im z0 > 0. Therefore, (ii) holds.

Conversely, assuming (ii), then the mapping is one-to-one from C\{z0} onto C\{eiα}. More-
over, since

|w| = |z − z0|
|z − z0|

,

we have

|w| < 1 if Im z > 0;

|w| = 1 if Im z = 0;

|w| > 1 if Im z < 0.

Then (i) follows.

Example 22.12. The transformation

w =
i− z
i+ z

can be written as

w = eiπ
(
z − i
z − i

)
.

Therefore, w maps the upper half plane {z : Im z > 0} onto the disc {w : |w| < 1} and the line
{z : Im z = 0} onto {w 6= −1 : |w| = 1}.
Example 22.13. In this example, we will show that the transformation

w =
z − 1

z + 1

maps the half plane {z : Im z > 0} onto the plane {w : Imw > 0} and points on the real axis
{z : Im z = 0}\{−1} onto {w : Imw = 0}\{1}. We know that w is one-to-one from C\{−1}
onto C\{1}. Notice that if z is real, w is real. Since the image of the line {z : Im z = 0} must
be on a line or a circle, it equals to {w : Imw = 0}\{1}. Moreover, by writing z = x + yi, we
have

w =
x− 1 + yi

x+ 1 + yi
=

x2 + y2 − 1

(x+ 1)2 + y2
+

2y

(x+ 1)2 + y2
i.

That is, Imw has the same sign as Im z. Therefore, w maps {z : Im z > 0} onto {w : Imw > 0}.
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Example 22.14. Let

w = log
z − 1

z + 1
,

where the logarithm is the principal branch. w is one-to-one, and w is the composition of

Z =
z − 1

z + 1
and w = logZ.

Since Z maps the half plane {z : Im z > 0} onto the half plane {Z : ImZ > 0}, the image

of {z : Im z > 0} under w = log
z − 1

z + 1
is in the strip {w : 0 < Imw < π}. Moreover,

for each 0 < θ0 < π, the mapping w = logZ maps each ray {Z : |Z| > 0,ArgZ = θ0}
onto the line {w : Imw = θ0}. We conclude that w = log

z − 1

z + 1
maps {z : Im z > 0} onto

{w : 0 < Imw < π}.

Mapping by ez. Consider the mapping by the exponential function

w = ez.

w maps a vertical line {z : Re z = c1}, c1 ∈ R, onto the circle {w : |w| = ec1}. Each points on
the circle is the image of infinitely many points. For a horizontal line {z : Im z = c2}, c2 ∈ R,
w maps it one-to-one and onto the ray {w : |w| > 0, c2 ∈ argw}. Vertical and horizontal line
segments are mapped onto portions of circles and rays.

Example 22.15. Let w = ez. Then w maps the rectangular region

{z : a ≤ Re z ≤ b, c ≤ Im z ≤ d}

onto the region {
w : w = ρeiθ, ea ≤ ρ ≤ eb, c ≤ θ ≤ d

}
.

An vertical line segment

{z : Re z = c1, c ≤ Im z ≤ d}, a ≤ c1 ≤ b,

is mapped onto the arc {
w : w = ec1eiθ, c ≤ θ ≤ d

}
.

An horizontal line segment

{z : a ≤ Re z ≤ b, Im z = c2}

is mapped onto the line segment{
w : w = ρeiθ, ea ≤ ρ ≤ eb, θ = c2

}
.

Moreover, if d− c < 2π, the mapping one-to-one on the rectangular region.
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Example 22.16. Let w = ez. Then w maps the strip

{z : 0 < Im z < π}

one-to-one and onto the half space

{w : Imw > 0}.

Example 22.17. We consider the mapping

w =
1

2

(
z +

1

z

)
.

By letting z = ρeiθ and w = u+ vi, we have

u =
1

2

(
ρ+

1

ρ

)
cos θ and v =

1

2

(
ρ− 1

ρ

)
sin θ.

For any positive ρ 6= 1, we have

u2

(ρ+ ρ−1)2 /4
+

v2

(ρ− ρ−1)2 /4
= 1.

For θ ∈ (−π, π) \{−π/2, 0, π/2}, we have

u2

cos2 θ
− v2

sin2 θ
= 1

Therefore,

(i) w maps a circle {z : |z| = ρ0} for positive ρ0 6= 1, onto an ellipse with foci ±1 and length
of long axis ρ0 + ρ−1

0 ;

(ii) w maps a ray {z : |z| ≥ 1,Arg z = θ0} for θ0 /∈ {−π/2, 0, π/2, π} onto half a branch of
hyperbola.

Example 22.18. Consider the mapping

w =
1

2

(
z +

1

z

)
.

As discussed in Example 22.17, the upper half circle {z : |z| = ρ, Im z > 0} for some 0 < ρ < 1,
is mapped onto {

w = u+ vi :
u2

(ρ+ ρ−1)2 /4
+

v2

(ρ− ρ−1)2 /4
= 1, v < 0

}
,

the lower half part of an ellipse. The lower half circle {z : |z| = ρ, Im z < 0} for some 0 < ρ < 1,
is mapped onto {

w = u+ vi :
u2

(ρ+ ρ−1)2 /4
+

v2

(ρ− ρ−1)2 /4
= 1, v > 0

}
,

the upper half part of an ellipse. As a consequence, w maps the upper half disc {z : |z| <
1, Im z > 0} onto the lower half plane {w : Imw < 0}, and w maps the lower half disc
{z : |z| < 1, Im z < 0} onto the upper half plane {w : Imw > 0}.
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Example 22.19. Consider the mapping

w = sin z =
eiz − e−iz

2i
,

which can be regarded as a composition of

Z = eiz, W = iZ, and w = −1

2

(
W +

1

W

)
.

The half strip {
z : −π

2
< Re z <

π

2
, Im z > 0

}
is mapped by Z = eiz onto the half disc{

Z = ρeiθ : 0 < ρ < 1, −π
2
< θ <

π

2

}
.

The above half disc is mapped by W = iZ onto the half disc{
W = ρeiθ : 0 < ρ < 1, 0 < θ < π

}
.

Finally, the above is mapped by w = −1

2

(
W +

1

W

)
onto the half plane

{w : Im > 0} .

That is, the half strip {
z : −π

2
< Re z <

π

2
, Im z > 0

}
is mapped by w = sin z onto the half plane {w : Im > 0}.

23 Conformal Mappings

Definition 23.1. Let f be analytic at z0. f is conformal at z0 if there are θ0 ∈ R and ρ0 > 0
such that for any smooth curve γ through z0, f maps the tangent vector of γ at z0 by rotating
it by θ0 and then scaling it by ρ0. That is, for any γ through z0, parametrized by z(t), where
z(t0) = z0, we have

(f ◦ z)′(t0) = ρ0e
iθ0z′(t0).

If f is conformal at each points on a region Ω, then the mapping by f is called a conformal
mapping on Ω.

Proposition 23.2. If f is analytic on a region Ω and f ′(z0) 6= 0 for some z0 ∈ Ω, then f is
conformal at z0.

Proof. By writing f ′(z0) = ρ0e
iθ0 for some theta0 ∈ R and ρ0 > 0, then for any curve γ through

z0, parametrized by z(t), where z(t0) = z0, we have

(f ◦ z)′(t0) = f ′(z(t0))z′(t0) = f ′(z0)z′(t0) = ρ0e
iθ0z′(t0).

Example 23.3. The mapping w = ez is conformal on the whole complex plane C.
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